» Articles » PMID: 18985131

Meta-analysis of Functional Neuroimaging Data: Current and Future Directions

Overview
Date 2008 Nov 6
PMID 18985131
Citations 168
Authors
Affiliations
Soon will be listed here.
Abstract

Meta-analysis is an increasingly popular and valuable tool for summarizing results across many neuroimaging studies. It can be used to establish consensus on the locations of functional regions, test hypotheses developed from patient and animal studies and develop new hypotheses on structure-function correspondence. It is particularly valuable in neuroimaging because most studies do not adequately correct for multiple comparisons; based on statistical thresholds used, we estimate that roughly 10-20% of reported activations in published studies are false positives. In this article, we briefly summarize some of the most popular meta-analytic approaches and their limitations, and we outline a revised multilevel approach with increased validity for establishing consistency across studies. We also discuss multivariate methods by which meta-analysis can be used to develop and test hypotheses about co-activity of brain regions. Finally, we argue that meta-analyses can make a uniquely valuable contribution to predicting psychological states from patterns of brain activity, and we briefly discuss some methods for making such predictions.

Citing Articles

A meta-analysis of cognitive flexibility in aging: Perspective from functional network and lateralization.

Xia H, Hou Y, Li Q, Chen A Hum Brain Mapp. 2024; 45(14):e70031.

PMID: 39360550 PMC: 11447525. DOI: 10.1002/hbm.70031.


Immediate and long-term brain activation of acupuncture on ischemic stroke patients: an ALE meta-analysis of fMRI studies.

Zhang Y, Lu H, Ren X, Zhang J, Wang Y, Zhang C Front Neurosci. 2024; 18:1392002.

PMID: 39099634 PMC: 11294246. DOI: 10.3389/fnins.2024.1392002.


Neuroimaging meta regression for coordinate based meta analysis data with a spatial model.

Yu Y, Pintos Lobo R, Riedel M, Bottenhorn K, Laird A, Nichols T Biostatistics. 2024; 25(4):1210-1232.

PMID: 39002146 PMC: 11471956. DOI: 10.1093/biostatistics/kxae024.


Activation Likelihood Estimation Neuroimaging Meta-Analysis: a Powerful Tool for Emotion Research.

Costa T, Ferraro M, Manuello J, Camasio A, Nani A, Mancuso L Psychol Res Behav Manag. 2024; 17:2331-2345.

PMID: 38882233 PMC: 11179639. DOI: 10.2147/PRBM.S453035.


Gray Matter Alterations in Panic Disorder: A Voxel-Wise Meta-Analysis.

Pan A, Liu S, Hu S, Dai J, Yi J Psychiatry Clin Psychopharmacol. 2024; 33(3):229-237.

PMID: 38765308 PMC: 11082626. DOI: 10.5152/pcp.2023.23684.


References
1.
Murphy F, Nimmo-Smith I, Lawrence A . Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci. 2003; 3(3):207-33. DOI: 10.3758/cabn.3.3.207. View

2.
Turkeltaub P, Eden G, Jones K, Zeffiro T . Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage. 2002; 16(3 Pt 1):765-80. DOI: 10.1006/nimg.2002.1131. View

3.
Thornton A, Van Snellenberg J, Sepehry A, Honer W . The impact of atypical antipsychotic medications on long-term memory dysfunction in schizophrenia spectrum disorder: a quantitative review. J Psychopharmacol. 2005; 20(3):335-46. DOI: 10.1177/0269881105057002. View

4.
Wager T, Smith E . Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2004; 3(4):255-74. DOI: 10.3758/cabn.3.4.255. View

5.
Wager T, Jonides J, Reading S . Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage. 2004; 22(4):1679-93. DOI: 10.1016/j.neuroimage.2004.03.052. View