» Articles » PMID: 17598730

Interference Resolution: Insights from a Meta-analysis of Neuroimaging Tasks

Overview
Publisher Springer
Date 2007 Jun 30
PMID 17598730
Citations 336
Authors
Affiliations
Soon will be listed here.
Abstract

A quantitative meta-analysis was performed on 47 neuroimaging studies involving tasks purported to require the resolution of interference. The tasks included the Stroop, flanker, go/no-go, stimulus-response compatibility, Simon, and stop signal tasks. Peak density-based analyses of these combined tasks reveal that the anterior cingulate cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, posterior parietal cortex, and anterior insula may be important sites for the detection and/or resolution of interference. Individual task analyses reveal differential patterns of activation among the tasks. We propose that the drawing of distinctions among the processing stages at which interference may be resolved may explain regional activation differences. Our analyses suggest that resolution processes acting upon stimulus encoding, response selection, and response execution may recruit different neural regions.

Citing Articles

Neural dynamics of proactive and reactive cognitive control in medial and lateral prefrontal cortex.

Khan A, Hoy C, Anderson K, Piai V, KingStephens D, Stephens D bioRxiv. 2025; .

PMID: 39990315 PMC: 11844492. DOI: 10.1101/2025.02.12.637987.


Brain compensatory activation during Stroop task in patients with mild cognitive impairment: a functional near-infrared spectroscopy study.

Fan C, Li H, Chen K, Yang G, Xie H, Li H Front Aging Neurosci. 2025; 17:1470747.

PMID: 39990105 PMC: 11842388. DOI: 10.3389/fnagi.2025.1470747.


Proactive control for conflict resolution is intact in subclinical obsessive-compulsive individuals.

Fornaro S, Visalli A, Viviani G, Ambrosini E, Vallesi A Front Psychol. 2024; 15:1490147.

PMID: 39502144 PMC: 11534808. DOI: 10.3389/fpsyg.2024.1490147.


Neural, genetic, and cognitive signatures of creativity.

Liu C, Zhuang K, Zeitlen D, Chen Q, Wang X, Feng Q Commun Biol. 2024; 7(1):1324.

PMID: 39402209 PMC: 11473644. DOI: 10.1038/s42003-024-07007-6.


Effects of stimulus onset asynchrony on cognitive control in healthy adults.

Narmashiri A PLoS One. 2024; 19(7):e0306609.

PMID: 39018299 PMC: 11253978. DOI: 10.1371/journal.pone.0306609.


References
1.
Casey B, Thomas K, Davidson M, Kunz K, Franzen P . Dissociating striatal and hippocampal function developmentally with a stimulus-response compatibility task. J Neurosci. 2002; 22(19):8647-52. PMC: 6757769. View

2.
Turkeltaub P, Eden G, Jones K, Zeffiro T . Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage. 2002; 16(3 Pt 1):765-80. DOI: 10.1006/nimg.2002.1131. View

3.
Peterson B, Skudlarski P, Gatenby J, Zhang H, Anderson A, Gore J . An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry. 1999; 45(10):1237-58. DOI: 10.1016/s0006-3223(99)00056-6. View

4.
Aron A, Robbins T, Poldrack R . Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004; 8(4):170-7. DOI: 10.1016/j.tics.2004.02.010. View

5.
Wager T, Smith E . Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2004; 3(4):255-74. DOI: 10.3758/cabn.3.4.255. View