» Articles » PMID: 18840532

A High-resolution Computational Atlas of the Human Hippocampus from Postmortem Magnetic Resonance Imaging at 9.4 T

Overview
Journal Neuroimage
Specialty Radiology
Date 2008 Oct 9
PMID 18840532
Citations 97
Authors
Affiliations
Soon will be listed here.
Abstract

This paper describes the construction of a computational anatomical atlas of the human hippocampus. The atlas is derived from high-resolution 9.4 Tesla MRI of postmortem samples. The main subfields of the hippocampus (cornu ammonis fields CA1, CA2/3; the dentate gyrus; and the vestigial hippocampal sulcus) are labeled in the images manually using a combination of distinguishable image features and geometrical features. A synthetic average image is derived from the MRI of the samples using shape and intensity averaging in the diffeomorphic non-linear registration framework, and a consensus labeling of the template is generated. The agreement of the consensus labeling with manual labeling of each sample is measured, and the effect of aiding registration with landmarks and manually generated mask images is evaluated. The atlas is provided as an online resource with the aim of supporting subfield segmentation in emerging hippocampus imaging and image analysis techniques. An example application examining subfield-level hippocampal atrophy in temporal lobe epilepsy demonstrates the application of the atlas to in vivo studies.

Citing Articles

Ex vivo ultra-high field magnetic resonance imaging of human epileptogenic specimens from primarily the temporal lobe: A systematic review.

Lemmens M, van Lanen R, Uher D, Colon A, Hoeberigs M, Hoogland G Neuroradiology. 2025; .

PMID: 40056183 DOI: 10.1007/s00234-024-03474-0.


Advances in magnetic resonance imaging for the assessment of paediatric focal epilepsy: a narrative review.

Pastore L, De Vita E, Sudhakar S, Lobel U, Mankad K, Biswas A Transl Pediatr. 2024; 13(9):1617-1633.

PMID: 39399717 PMC: 11467228. DOI: 10.21037/tp-24-166.


A next-generation, histological atlas of the human brain and its application to automated brain MRI segmentation.

Casamitjana A, Mancini M, Robinson E, Peter L, Annunziata R, Althonayan J bioRxiv. 2024; .

PMID: 39282320 PMC: 11398399. DOI: 10.1101/2024.02.05.579016.


DSnet: a new dual-branch network for hippocampus subfield segmentation.

Zhu H, Cheng W, Hu K, He G Sci Rep. 2024; 14(1):15317.

PMID: 38961218 PMC: 11222372. DOI: 10.1038/s41598-024-66415-0.


Immunohistochemical field parcellation of the human hippocampus along its antero-posterior axis.

Gonzalez-Arnay E, Perez-Santos I, Jimenez-Sanchez L, Cid E, Gal B, de la Prida L Brain Struct Funct. 2024; 229(2):359-385.

PMID: 38180568 PMC: 10917878. DOI: 10.1007/s00429-023-02725-9.


References
1.
Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald L, Augustinack J . Model-based segmentation of hippocampal subfields in ultra-high resolution in vivo MRI. Med Image Comput Comput Assist Interv. 2008; 11(Pt 1):235-43. PMC: 2799119. DOI: 10.1007/978-3-540-85988-8_29. View

2.
Avants B, Gee J . Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage. 2004; 23 Suppl 1:S139-50. DOI: 10.1016/j.neuroimage.2004.07.010. View

3.
Palacios Bote R, Blazquez-Llorca L, Fernandez-Gil M, Alonso-Nanclares L, Munoz A, De Felipe J . Hippocampal sclerosis: histopathology substrate and magnetic resonance imaging. Semin Ultrasound CT MR. 2008; 29(1):2-14. DOI: 10.1053/j.sult.2007.11.005. View

4.
Squire L, Stark C, Clark R . The medial temporal lobe. Annu Rev Neurosci. 2004; 27:279-306. DOI: 10.1146/annurev.neuro.27.070203.144130. View

5.
Jack Jr C, Theodore W, Cook M, McCarthy G . MRI-based hippocampal volumetrics: data acquisition, normal ranges, and optimal protocol. Magn Reson Imaging. 1995; 13(8):1057-64. DOI: 10.1016/0730-725x(95)02013-j. View