» Articles » PMID: 18834498

Text Mining for Biology--the Way Forward: Opinions from Leading Scientists

Abstract

This article collects opinions from leading scientists about how text mining can provide better access to the biological literature, how the scientific community can help with this process, what the next steps are, and what role future BioCreative evaluations can play. The responses identify several broad themes, including the possibility of fusing literature and biological databases through text mining; the need for user interfaces tailored to different classes of users and supporting community-based annotation; the importance of scaling text mining technology and inserting it into larger workflows; and suggestions for additional challenge evaluations, new applications, and additional resources needed to make progress.

Citing Articles

DeepGenePrior: A deep learning model for prioritizing genes affected by copy number variants.

Rahaie Z, Rabiee H, Alinejad-Rokny H PLoS Comput Biol. 2023; 19(7):e1011249.

PMID: 37486921 PMC: 10399873. DOI: 10.1371/journal.pcbi.1011249.


Pandemics, epidemics, viruses, plagues, and disease: Comparative frequency analysis of a cultural pathology reflected in science fiction magazines from 1926 to 2015.

Menadue C Soc Sci Humanit Open. 2021; 2(1):100048.

PMID: 34173491 PMC: 7480741. DOI: 10.1016/j.ssaho.2020.100048.


Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network.

David R, Menezes R, De Klerk J, Castleden I, Hooper C, Carneiro G Sci Rep. 2021; 11(1):1696.

PMID: 33462256 PMC: 7813825. DOI: 10.1038/s41598-020-80441-8.


Metabolic networks of the Nicotiana genus in the spotlight: content, progress and outlook.

Foerster H, Battey J, Sierro N, Ivanov N, Mueller L Brief Bioinform. 2020; 22(3).

PMID: 32662816 PMC: 8138835. DOI: 10.1093/bib/bbaa136.


Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees.

Li L, Koh C, Reker D, Brown J, Wang H, Lee N Sci Rep. 2019; 9(1):7703.

PMID: 31118426 PMC: 6531441. DOI: 10.1038/s41598-019-43125-6.


References
1.
Hersh W, Bhupatiraju R, Ross L, Roberts P, Cohen A, Kraemer D . Enhancing access to the Bibliome: the TREC 2004 Genomics Track. J Biomed Discov Collab. 2006; 1:3. PMC: 1440302. DOI: 10.1186/1747-5333-1-3. View

2.
Hahn U, Wermter J, Blasczyk R, Horn P . Text mining: powering the database revolution. Nature. 2007; 448(7150):130. DOI: 10.1038/448130b. View

3.
Chatr-Aryamontri A, Kerrien S, Khadake J, Orchard S, Ceol A, Licata L . MINT and IntAct contribute to the Second BioCreative challenge: serving the text-mining community with high quality molecular interaction data. Genome Biol. 2008; 9 Suppl 2:S5. PMC: 2559989. DOI: 10.1186/gb-2008-9-s2-s5. View

4.
Cohen A, Hersh W . The TREC 2004 genomics track categorization task: classifying full text biomedical documents. J Biomed Discov Collab. 2006; 1:4. PMC: 1440303. DOI: 10.1186/1747-5333-1-4. View

5.
Cohen A, Hersh W . A survey of current work in biomedical text mining. Brief Bioinform. 2005; 6(1):57-71. DOI: 10.1093/bib/6.1.57. View