» Articles » PMID: 18832364

PID: the Pathway Interaction Database

Overview
Specialty Biochemistry
Date 2008 Oct 4
PMID 18832364
Citations 891
Authors
Affiliations
Soon will be listed here.
Abstract

The Pathway Interaction Database (PID, http://pid.nci.nih.gov) is a freely available collection of curated and peer-reviewed pathways composed of human molecular signaling and regulatory events and key cellular processes. Created in a collaboration between the US National Cancer Institute and Nature Publishing Group, the database serves as a research tool for the cancer research community and others interested in cellular pathways, such as neuroscientists, developmental biologists and immunologists. PID offers a range of search features to facilitate pathway exploration. Users can browse the predefined set of pathways or create interaction network maps centered on a single molecule or cellular process of interest. In addition, the batch query tool allows users to upload long list(s) of molecules, such as those derived from microarray experiments, and either overlay these molecules onto predefined pathways or visualize the complete molecular connectivity map. Users can also download molecule lists, citation lists and complete database content in extensible markup language (XML) and Biological Pathways Exchange (BioPAX) Level 2 format. The database is updated with new pathway content every month and supplemented by specially commissioned articles on the practical uses of other relevant online tools.

Citing Articles

Product Manifold Representations for Learning on Biological Pathways.

McNeela D, Sala F, Gitter A ArXiv. 2025; .

PMID: 39975438 PMC: 11838783.


UV-induced reorganization of 3D genome mediates DNA damage response.

Kaya V, Adebali O Nat Commun. 2025; 16(1):1376.

PMID: 39910043 PMC: 11799157. DOI: 10.1038/s41467-024-55724-7.


The E2F4 transcriptional repressor is a key mechanistic regulator of colon cancer resistance to (CPT-11).

Matsubara J, Li Y, Koul S, Mukohyama J, Salazar L, Isobe T bioRxiv. 2025; .

PMID: 39896677 PMC: 11785039. DOI: 10.1101/2025.01.22.633435.


Single-cell sequencing of human Langerhans cells identifies altered gene expression profiles in patients with atopic dermatitis.

Tamminga S, Van Der Wal M, Saager E, van der Gang L, Boesjes C, Hendriks A Immunohorizons. 2025; 9(2).

PMID: 39849992 PMC: 11841975. DOI: 10.1093/immhor/vlae009.


IDH-mutant glioma risk stratification via whole slide images: Identifying pathological feature associations.

Wang X, Wang Z, Wang W, Liu Z, Ma Z, Guo Y iScience. 2025; 28(1):111605.

PMID: 39845415 PMC: 11751506. DOI: 10.1016/j.isci.2024.111605.


References
1.
Greenman C, Stephens P, Smith R, Dalgliesh G, Hunter C, Bignell G . Patterns of somatic mutation in human cancer genomes. Nature. 2007; 446(7132):153-8. PMC: 2712719. DOI: 10.1038/nature05610. View

2.
Romero P, Wagg J, Green M, Kaiser D, Krummenacker M, Karp P . Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. 2005; 6(1):R2. PMC: 549063. DOI: 10.1186/gb-2004-6-1-r2. View

3.
Network T . Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2013; 494(7438):506. DOI: 10.1038/nature11903. View

4.
Fragoso G, de Coronado S, Haber M, Hartel F, Wright L . Overview and utilization of the NCI thesaurus. Comp Funct Genomics. 2008; 5(8):648-54. PMC: 2447470. DOI: 10.1002/cfg.445. View

5.
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J . Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1):25-9. PMC: 3037419. DOI: 10.1038/75556. View