» Articles » PMID: 18829720

Testing the Palindromic Target Site Model for DNA Transposon Insertion Using the Drosophila Melanogaster P-element

Overview
Specialty Biochemistry
Date 2008 Oct 3
PMID 18829720
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding the molecular mechanisms that influence transposable element target site preferences is a fundamental challenge in functional and evolutionary genomics. Large-scale transposon insertion projects provide excellent material to study target site preferences in the absence of confounding effects of post-insertion evolutionary change. Growing evidence from a wide variety of prokaryotes and eukaryotes indicates that DNA transposons recognize staggered-cut palindromic target site motifs (TSMs). Here, we use over 10 000 accurately mapped P-element insertions in the Drosophila melanogaster genome to test predictions of the staggered-cut palindromic target site model for DNA transposon insertion. We provide evidence that the P-element targets a 14-bp palindromic motif that can be identified at the primary sequence level, which predicts the local spacing, hotspots and strand orientation of P-element insertions. Intriguingly, we find that the although P-element destroys the complete 14-bp target site upon insertion, the terminal three nucleotides of the P-element inverted repeats complement and restore the original TSM, suggesting a mechanistic link between transposon target sites and their terminal inverted repeats. Finally, we discuss how the staggered-cut palindromic target site model can be used to assess the accuracy of genome mappings for annotated P-element insertions.

Citing Articles

Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays.

Santiago-Frangos A, Henriques W, Wiegand T, Gauvin C, Buyukyoruk M, Graham A Nat Struct Mol Biol. 2023; 30(11):1675-1685.

PMID: 37710013 PMC: 10872659. DOI: 10.1038/s41594-023-01097-2.


Unraveling the palindromic and nonpalindromic motifs of retroviral integration site sequences by statistical mixture models.

Miklik D, Grim J, Elleder D, Hejnar J Genome Res. 2023; 33(8):1395-1408.

PMID: 37463751 PMC: 10547254. DOI: 10.1101/gr.277694.123.


The Landscape of the DNA Transposons in the Genome of the Horezu_LaPeri Strain of .

Bologa A, Stoica I, Constantin N, Ecovoiu A Insects. 2023; 14(6).

PMID: 37367310 PMC: 10299278. DOI: 10.3390/insects14060494.


Generation of LexA enhancer-trap lines in Drosophila by an international scholastic network.

Kim E, Rajan A, Chang K, Govindarajan S, Gulick C, English E G3 (Bethesda). 2023; 13(9).

PMID: 37279923 PMC: 10468311. DOI: 10.1093/g3journal/jkad124.


Genome ARTIST_v2-An Autonomous Bioinformatics Tool for Annotation of Natural Transposons in Sequenced Genomes.

Ecovoiu A, Bologa A, Chifiriuc D, Ciuca A, Constantin N, Ghionoiu I Int J Mol Sci. 2022; 23(20).

PMID: 36293549 PMC: 9604107. DOI: 10.3390/ijms232012686.


References
1.
Mates L, Izsvak Z, Ivics Z . Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol. 2007; 8 Suppl 1:S1. PMC: 2106849. DOI: 10.1186/gb-2007-8-s1-s1. View

2.
Tenzen T, Ohtsubo E . Preferential transposition of an IS630-associated composite transposon to TA in the 5'-CTAG-3' sequence. J Bacteriol. 1991; 173(19):6207-12. PMC: 208372. DOI: 10.1128/jb.173.19.6207-6212.1991. View

3.
Tower J, Karpen G, Craig N, Spradling A . Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics. 1993; 133(2):347-59. PMC: 1205324. DOI: 10.1093/genetics/133.2.347. View

4.
Spradling A, Stern D, Beaton A, Rhem E, Laverty T, Mozden N . The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999; 153(1):135-77. PMC: 1460730. DOI: 10.1093/genetics/153.1.135. View

5.
Hallet B, Rezsohazy R, Mahillon J, Delcour J . IS231A insertion specificity: consensus sequence and DNA bending at the target site. Mol Microbiol. 1994; 14(1):131-9. DOI: 10.1111/j.1365-2958.1994.tb01273.x. View