Punchihewage-Don A, Ranaweera P, Parveen S
Front Antibiot. 2025; 3():1448796.
PMID: 39816264
PMC: 11731628.
DOI: 10.3389/frabi.2024.1448796.
Koczerka M, Lantier I, Morillon M, Deperne J, Clamagirand C, Virlogeux-Payant I
Open Biol. 2024; 14(1):230312.
PMID: 38228171
PMC: 10791514.
DOI: 10.1098/rsob.230312.
Li Y, Tian S, Yang L, Bao X, Su L, Zhang X
Metabolomics. 2022; 18(11):93.
PMID: 36378357
DOI: 10.1007/s11306-022-01946-z.
Shaw C, Hess M, Weimer B
Virulence. 2022; 13(1):1666-1680.
PMID: 36128741
PMC: 9518994.
DOI: 10.1080/21505594.2022.2127196.
Kang X, Zhou X, Tang Y, Jiang Z, Chen J, Mohsin M
Int J Mol Sci. 2022; 23(17).
PMID: 36077599
PMC: 9456408.
DOI: 10.3390/ijms231710201.
Exploring the mode of action of inhibitors targeting the PhoP response regulator of through comprehensive pharmacophore approaches.
Tsai K, Hung P, Cheng C, Chen C, Tseng T
RSC Adv. 2022; 9(16):9308-9312.
PMID: 35517705
PMC: 9062048.
DOI: 10.1039/c9ra00620f.
The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium.
Sobota M, Rodilla Ramirez P, Cambre A, Rocker A, Mortier J, Gervais T
PLoS Biol. 2022; 20(4):e3001608.
PMID: 35389980
PMC: 9017878.
DOI: 10.1371/journal.pbio.3001608.
Co-Lateral Effect of Octenidine, Chlorhexidine and Colistin Selective Pressures on Four Enterobacterial Species: A Comparative Genomic Analysis.
Lescat M, Magnan M, Kenmoe S, Nordmann P, Poirel L
Antibiotics (Basel). 2022; 11(1).
PMID: 35052927
PMC: 8772718.
DOI: 10.3390/antibiotics11010050.
Opposing Effects of PhoPQ and PmrAB on the Properties of serovar Typhimurium: Implications on Resistance to Antimicrobial Peptides.
Shprung T, Wani N, Wilmes M, Mangoni M, Bitler A, Shimoni E
Biochemistry. 2021; 60(39):2943-2955.
PMID: 34547893
PMC: 8638962.
DOI: 10.1021/acs.biochem.1c00287.
Investigation of the invasion mechanism mediated by the outer membrane protein PagN of Salmonella Typhimurium.
Barilleau E, Vedrine M, Koczerka M, Burlaud-Gaillard J, Kempf F, Grepinet O
BMC Microbiol. 2021; 21(1):153.
PMID: 34020586
PMC: 8140442.
DOI: 10.1186/s12866-021-02187-1.
Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics.
Popella L, Jung J, Popova K, urica-Mitic S, Barquist L, Vogel J
Nucleic Acids Res. 2021; 49(8):4705-4724.
PMID: 33849070
PMC: 8096218.
DOI: 10.1093/nar/gkab242.
PhoPQ two-component regulatory system plays a global regulatory role in antibiotic susceptibility, physiology, stress adaptation, and virulence in Stenotrophomonas maltophilia.
Lu H, Wu B, Huang Y, Lee M, Li M, Ho H
BMC Microbiol. 2020; 20(1):312.
PMID: 33054754
PMC: 7559202.
DOI: 10.1186/s12866-020-01989-z.
Type III Secretion Effectors with Arginine N-Glycosyltransferase Activity.
Araujo-Garrido J, Bernal-Bayard J, Ramos-Morales F
Microorganisms. 2020; 8(3).
PMID: 32131463
PMC: 7142665.
DOI: 10.3390/microorganisms8030357.
Oxidative Stress Influences Pseudomonas aeruginosa Susceptibility to Antibiotics and Reduces Its Pathogenesis in Host.
Mohamed F, Shaker G, Askoura M
Curr Microbiol. 2020; 77(3):479-490.
PMID: 31907601
DOI: 10.1007/s00284-019-01858-7.
Mechanisms of Salmonella pathogenesis in animal models.
Palmer A, Slauch J
Hum Ecol Risk Assess. 2019; 23(8):1877-1892.
PMID: 31031557
PMC: 6484827.
DOI: 10.1080/10807039.2017.1353903.
Contribution of the Cpx envelope stress system to metabolism and virulence regulation in Salmonella enterica serovar Typhimurium.
Subramaniam S, Muller V, Hering N, Mollenkopf H, Becker D, Heroven A
PLoS One. 2019; 14(2):e0211584.
PMID: 30716090
PMC: 6361445.
DOI: 10.1371/journal.pone.0211584.
Suppressor mutations reveal an NtrC-like response regulator, NmpR, for modulation of Type-IV Pili-dependent motility in Myxococcus xanthus.
Bretl D, Ladd K, Atkinson S, Muller S, Kirby J
PLoS Genet. 2018; 14(10):e1007714.
PMID: 30346960
PMC: 6211767.
DOI: 10.1371/journal.pgen.1007714.
Function and Biogenesis of Lipopolysaccharides.
Bertani B, Ruiz N
EcoSal Plus. 2018; 8(1).
PMID: 30066669
PMC: 6091223.
DOI: 10.1128/ecosalplus.ESP-0001-2018.
Extensive reshaping of bacterial operons by programmed mRNA decay.
Dar D, Sorek R
PLoS Genet. 2018; 14(4):e1007354.
PMID: 29668692
PMC: 5927463.
DOI: 10.1371/journal.pgen.1007354.
Bacterial Adaptation to Antibiotics through Regulatory RNAs.
Felden B, Cattoir V
Antimicrob Agents Chemother. 2018; 62(5).
PMID: 29530859
PMC: 5923175.
DOI: 10.1128/AAC.02503-17.