» Articles » PMID: 18753411

ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]-oxadiazol-5-yl]-piperidin-1-yl}-methanone]: a Novel Metabotropic Glutamate Receptor 5-selective Positive Allosteric Modulator with Preclinical Antipsychotic-like and Procognitive...

Abstract

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) enhance N-methyl-d-aspartate receptor function and may represent a novel approach for the treatment of schizophrenia. ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone], a recently identified potent and selective mGlu5 PAM, increased (9-fold) the response to threshold concentration of glutamate (50 nM) in fluorometric Ca(2+) assays (EC(50) = 170 nM) in human embryonic kidney 293 cells expressing rat mGlu5. In the same system, ADX47273 dose-dependently shifted mGlu5 receptor glutamate response curve to the left (9-fold at 1 microM) and competed for binding of [(3)H]2-methyl-6-(phenylethynyl)pyridine (K(i) = 4.3 microM), but not [(3)H]quisqualate. In vivo, ADX47273 increased extracellular signal-regulated kinase and cAMP-responsive element-binding protein phosphorylation in hippocampus and prefrontal cortex, both of which are critical for glutamate-mediated signal transduction mechanisms. In models sensitive to antipsychotic drug treatment, ADX47273 reduced rat-conditioned avoidance responding [minimal effective dose (MED) = 30 mg/kg i.p.] and decreased mouse apomorphine-induced climbing (MED = 100 mg/kg i.p.), with little effect on stereotypy or catalepsy. Furthermore, ADX47273 blocked phencyclidine, apomorphine, and amphetamine-induced locomotor activities (MED = 100 mg/kg i.p.) in mice and decreased extracellular levels of dopamine in the nucleus accumbens, but not in the striatum, in rats. In cognition models, ADX47273 increased novel object recognition (MED = 1 mg/kg i.p.) and reduced impulsivity in the five-choice serial reaction time test (MED = 10 mg/kg i.p.) in rats. Taken together, these effects are consistent with the hypothesis that allosteric potentiation of mGlu5 may provide a novel approach for development of antipsychotic and procognitive agents.

Citing Articles

Brain mGlu5 Is Linked to Cognition and Cigarette Smoking but Does Not Differ From Control in Early Abstinence From Chronic Methamphetamine Use.

McClintick M, Kessler R, Mandelkern M, Mahmoudie T, Allen D, Lachoff H Int J Neuropsychopharmacol. 2024; 27(8).

PMID: 39120945 PMC: 11348008. DOI: 10.1093/ijnp/pyae031.


Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research.

Yates J Prog Neuropsychopharmacol Biol Psychiatry. 2024; 135:111107.

PMID: 39098647 PMC: 11409449. DOI: 10.1016/j.pnpbp.2024.111107.


mGluR5 positive allosteric modulation prevents MK-801 induced increases in extracellular glutamate in the rat medial prefrontal cortex.

LaCrosse A, May C, Griffin W, Olive M Neuroscience. 2024; 555:83-91.

PMID: 39019391 PMC: 11344657. DOI: 10.1016/j.neuroscience.2024.06.016.


The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia.

Uliana D, Lisboa J, Gomes F, Grace A Biochem Pharmacol. 2024; 228:116298.

PMID: 38782077 PMC: 11410545. DOI: 10.1016/j.bcp.2024.116298.


Oscillatory Deficits in the Sub-Chronic PCP Rat Model for Schizophrenia Are Reversed by mGlu5 Receptor-Positive Allosteric Modulators VU0409551 and VU0360172.

Brown J, Grayson B, Neill J, Harte M, Wall M, Ngomba R Cells. 2023; 12(6).

PMID: 36980260 PMC: 10047164. DOI: 10.3390/cells12060919.