Taylor J, Rapaport A, Dochain D
Bull Math Biol. 2024; 86(6):65.
PMID: 38671332
PMC: 11052807.
DOI: 10.1007/s11538-024-01293-1.
Noor E, Liebermeister W
Interface Focus. 2024; 14(1):20230029.
PMID: 38344407
PMC: 10853694.
DOI: 10.1098/rsfs.2023.0029.
Baghdassarian H, Lewis N
Biotechnol Adv. 2024; 71:108305.
PMID: 38215956
PMC: 11182366.
DOI: 10.1016/j.biotechadv.2023.108305.
Dourado H, Mori M, Hwa T, Lercher M
PLoS Biol. 2021; 19(10):e3001416.
PMID: 34699521
PMC: 8547704.
DOI: 10.1371/journal.pbio.3001416.
Tsiantis N, Banga J
BMC Bioinformatics. 2020; 21(1):472.
PMID: 33087041
PMC: 7579911.
DOI: 10.1186/s12859-020-03808-8.
Redesigning metabolism based on orthogonality principles.
Pandit A, Srinivasan S, Mahadevan R
Nat Commun. 2017; 8:15188.
PMID: 28555623
PMC: 5459945.
DOI: 10.1038/ncomms15188.
How important is thermodynamics for identifying elementary flux modes?.
Peres S, Jolicoeur M, Moulin C, Dague P, Schuster S
PLoS One. 2017; 12(2):e0171440.
PMID: 28222104
PMC: 5319754.
DOI: 10.1371/journal.pone.0171440.
Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism.
Ewald J, Bartl M, Dandekar T, Kaleta C
PLoS Comput Biol. 2017; 13(2):e1005371.
PMID: 28212377
PMC: 5315294.
DOI: 10.1371/journal.pcbi.1005371.
Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks.
Haraldsdottir H, Fleming R
PLoS Comput Biol. 2016; 12(11):e1004999.
PMID: 27870845
PMC: 5117560.
DOI: 10.1371/journal.pcbi.1004999.
The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.
Noor E, Flamholz A, Bar-Even A, Davidi D, Milo R, Liebermeister W
PLoS Comput Biol. 2016; 12(11):e1005167.
PMID: 27812109
PMC: 5094713.
DOI: 10.1371/journal.pcbi.1005167.
Which sets of elementary flux modes form thermodynamically feasible flux distributions?.
Gerstl M, Jungreuthmayer C, Muller S, Zanghellini J
FEBS J. 2016; 283(9):1782-94.
PMID: 26940826
PMC: 4949704.
DOI: 10.1111/febs.13702.
Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.
Tepper N, Noor E, Amador-Noguez D, Haraldsdottir H, Milo R, Rabinowitz J
PLoS One. 2013; 8(9):e75370.
PMID: 24086517
PMC: 3784570.
DOI: 10.1371/journal.pone.0075370.
Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.
Pozo C, Guillen-Gosalbez G, Sorribas A, Jimenez L
PLoS One. 2012; 7(9):e43487.
PMID: 23028457
PMC: 3447875.
DOI: 10.1371/journal.pone.0043487.
Use of game-theoretical methods in biochemistry and biophysics.
Schuster S, Kreft J, Schroeter A, Pfeiffer T
J Biol Phys. 2009; 34(1-2):1-17.
PMID: 19669489
PMC: 2577752.
DOI: 10.1007/s10867-008-9101-4.
Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock.
Vilaprinyo E, Alves R, Sorribas A
BMC Bioinformatics. 2006; 7:184.
PMID: 16584550
PMC: 1524994.
DOI: 10.1186/1471-2105-7-184.
The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools.
Famili I, Palsson B
Biophys J. 2003; 85(1):16-26.
PMID: 12829460
PMC: 1303061.
DOI: 10.1016/S0006-3495(03)74450-6.
Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. II. Time hierarchy, enzymatic rate laws, and erythrocyte metabolism.
Schuster S, Schuster R, Heinrich R
J Math Biol. 1991; 29(5):443-55.
PMID: 1875162
DOI: 10.1007/BF00160471.