» Articles » PMID: 1875162

Minimization of Intermediate Concentrations As a Suggested Optimality Principle for Biochemical Networks. II. Time Hierarchy, Enzymatic Rate Laws, and Erythrocyte Metabolism

Overview
Journal J Math Biol
Date 1991 Jan 1
PMID 1875162
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

The multiobjective problem of minimizing all intermediate concentrations is solved for a model of glycolysis, the pentose monophosphate shunt and the glutathione system in human erythrocytes. It turns out that one solution out of four obtained corresponds qualitatively to the real system. Furthermore, it is shown that for any reaction system, the mentioned optimality principle implies distinct time hierarchy in that some reactions are infinitely fast and subsist in quasi-equilibrium. Finally, the relationships to the standard method of deriving enzymatic rate laws are discussed.

Citing Articles

Convex Representation of Metabolic Networks with Michaelis-Menten Kinetics.

Taylor J, Rapaport A, Dochain D Bull Math Biol. 2024; 86(6):65.

PMID: 38671332 PMC: 11052807. DOI: 10.1007/s11538-024-01293-1.


Optimal enzyme profiles in unbranched metabolic pathways.

Noor E, Liebermeister W Interface Focus. 2024; 14(1):20230029.

PMID: 38344407 PMC: 10853694. DOI: 10.1098/rsfs.2023.0029.


Resource allocation in mammalian systems.

Baghdassarian H, Lewis N Biotechnol Adv. 2024; 71:108305.

PMID: 38215956 PMC: 11182366. DOI: 10.1016/j.biotechadv.2023.108305.


On the optimality of the enzyme-substrate relationship in bacteria.

Dourado H, Mori M, Hwa T, Lercher M PLoS Biol. 2021; 19(10):e3001416.

PMID: 34699521 PMC: 8547704. DOI: 10.1371/journal.pbio.3001416.


Using optimal control to understand complex metabolic pathways.

Tsiantis N, Banga J BMC Bioinformatics. 2020; 21(1):472.

PMID: 33087041 PMC: 7579911. DOI: 10.1186/s12859-020-03808-8.


References
1.
Garfinkel D, Hess B . METABOLIC CONTROL MECHANISMS. VII.A DETAILED COMPUTER MODEL OF THE GLYCOLYTIC PATHWAY IN ASCITES CELLS. J Biol Chem. 1964; 239:971-83. View

2.
Albery W, Knowles J . Evolution of enzyme function and the development of catalytic efficiency. Biochemistry. 1976; 15(25):5631-40. DOI: 10.1021/bi00670a032. View

3.
Kothe K, Sachsenroder C, Reich J . Redox metabolism of glutathione in the red blood cell. Acta Biol Med Ger. 1975; 34(2):203-28. View

4.
Albe K, Butler M, Wright B . Cellular concentrations of enzymes and their substrates. J Theor Biol. 1990; 143(2):163-95. DOI: 10.1016/s0022-5193(05)80266-8. View

5.
Heinrich R, RAPOPORT S, Rapoport T . Metabolic regulation and mathematical models. Prog Biophys Mol Biol. 1977; 32(1):1-82. View