Sahin A, Weilandt D, Hatzimanikatis V
Nat Commun. 2023; 14(1):2618.
PMID: 37147292
PMC: 10162984.
DOI: 10.1038/s41467-023-38159-4.
McDonald A, Tipton K, Davey G
PLoS Comput Biol. 2018; 14(8):e1006348.
PMID: 30074989
PMC: 6093706.
DOI: 10.1371/journal.pcbi.1006348.
DAlessandro L, Meyer R, Klingmuller U
Front Physiol. 2013; 4:28.
PMID: 23444340
PMC: 3580827.
DOI: 10.3389/fphys.2013.00028.
Weckwerth W
Anal Bioanal Chem. 2011; 400(7):1967-78.
PMID: 21556754
PMC: 3098350.
DOI: 10.1007/s00216-011-4948-9.
Jerby L, Shlomi T, Ruppin E
Mol Syst Biol. 2010; 6:401.
PMID: 20823844
PMC: 2964116.
DOI: 10.1038/msb.2010.56.
Approaches to biosimulation of cellular processes.
Bruggeman F, Westerhoff H
J Biol Phys. 2009; 32(3-4):273-88.
PMID: 19669467
PMC: 2651526.
DOI: 10.1007/s10867-006-9016-x.
Systems biology towards life in silico: mathematics of the control of living cells.
Westerhoff H, Kolodkin A, Conradie R, Wilkinson S, Bruggeman F, Krab K
J Math Biol. 2008; 58(1-2):7-34.
PMID: 18278498
DOI: 10.1007/s00285-008-0160-8.
Adaptation at Specific Loci. II. Demographic and Biochemical Elements in the Maintenance of the Colias Pgi Polymorphism.
Watt W
Genetics. 1983; 103(4):691-724.
PMID: 17246121
PMC: 1202049.
DOI: 10.1093/genetics/103.4.691.
Content of adenosine phosphate compounds in pea roots grown in saline media.
Hasson-Porath E, Poljakoff-Mayber A
Plant Physiol. 1971; 47(1):109-13.
PMID: 16657564
PMC: 365821.
DOI: 10.1104/pp.47.1.109.
Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock.
Vilaprinyo E, Alves R, Sorribas A
BMC Bioinformatics. 2006; 7:184.
PMID: 16584550
PMC: 1524994.
DOI: 10.1186/1471-2105-7-184.
Java Web Simulation (JWS); a web based database of kinetic models.
Snoep J, Olivier B
Mol Biol Rep. 2002; 29(1-2):259-63.
PMID: 12241068
DOI: 10.1023/a:1020350518131.
Metabolic response of nuclear and cytoplasmic pyridine nucleotides.
Kohen E, Kohen C, THORELL B
Histochemie. 1968; 12(2):107-19.
PMID: 5664662
DOI: 10.1007/BF00310362.
Simulation of the pentose cycle in lactating rat mammary gland.
Haut M, London J, Garfinkel D
Biochem J. 1974; 138(3):511-24.
PMID: 4154746
PMC: 1166237.
DOI: 10.1042/bj1380511.
A theoretical approach to the evolution and structural design of enzymatic networks: linear enzymatic chains, branched pathways and glycolysis of erythrocytes.
Heinrich R, Holzhutter H, Schuster S
Bull Math Biol. 1987; 49(5):539-95.
PMID: 3435799
DOI: 10.1016/s0092-8240(87)90003-6.
The inheritance of metabolic flux: expressions for the within-sibship mean and variance given the parental genotypes.
Ward P
Genetics. 1990; 125(3):655-67.
PMID: 2379825
PMC: 1204091.
DOI: 10.1093/genetics/125.3.655.
Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. II. Time hierarchy, enzymatic rate laws, and erythrocyte metabolism.
Schuster S, Schuster R, Heinrich R
J Math Biol. 1991; 29(5):443-55.
PMID: 1875162
DOI: 10.1007/BF00160471.
Multisite analysis of metabolic transients in single living cells by multichannel microfluorometry.
Kohen E, Kohen C, THORELL B, Schachtschabel D
Mikrochim Acta. 1975; (2-3 Pt 1):223-36.
PMID: 1134402
DOI: 10.1007/BF01218610.
Rabbit muscle myogen. Interactions with phosphate as the source of non-enantiography in moving-boundary electrophoresis.
Lovell S, Winzor D
Biochem J. 1976; 157(3):699-704.
PMID: 985412
PMC: 1163912.
DOI: 10.1042/bj1570699.