A Novel Vertebrate Model of Staphylococcus Aureus Infection Reveals Phagocyte-dependent Resistance of Zebrafish to Non-host Specialized Pathogens
Overview
Microbiology
Affiliations
With the emergence of multiply resistant Staphylococcus aureus, there is an urgent need to better understand the molecular determinants of S. aureus pathogenesis. A model of staphylococcal pathogenesis in zebrafish embryos has been established, in which host phagocytes are able to mount an effective immune response, preventing overwhelming infection from small inocula. Myeloid cell depletion, by pu.1 morpholino-modified antisense injection, removes this immune protection. Macrophages and neutrophils are both implicated in this immune response, phagocytosing circulating bacteria. In addition, in vivo phagocyte/bacteria interactions can be visualized within transparent embryos. A preliminary screen for bacterial pathogenesis determinants has shown that strains bearing mutations in perR, pheP and saeR are attenuated. perR and pheP mutants are deficient in growth in vivo, and their virulence is not fully restored by myeloid cell depletion. On the other hand, saeR mutants are able to grow in vivo, and are completely restored to virulence by myeloid cell depletion. Thus specific pathogen gene function can be matched with particular facets of host response. Zebrafish are a new addition to the tools available for the study of S. aureus pathogenesis, and may provide insights into the interactions of bacterial and host genomes in determining the outcome of infection.
Deciphering pathogenicity and virulence of the first isolate from diabetic foot osteomyelitis.
Abi Najem C, Magnan C, Plumet L, Ahmad-Mansour N, Pouget C, Morsli M Front Cell Infect Microbiol. 2025; 14:1489280.
PMID: 39742337 PMC: 11685071. DOI: 10.3389/fcimb.2024.1489280.
Franza M, Varricchio R, Alloisio G, De Simone G, Di Bella S, Ascenzi P Int J Mol Sci. 2024; 25(22).
PMID: 39596075 PMC: 11593600. DOI: 10.3390/ijms252212008.
Tooke A, Hodges R, Pyrah J, Bayles K, Renshaw S, Foster S Curr Microbiol. 2024; 81(12):447.
PMID: 39505760 PMC: 11541413. DOI: 10.1007/s00284-024-03959-4.
Plumet L, Magnan C, Ahmad-Mansour N, Sotto A, Lavigne J, Costechareyre D Antimicrob Agents Chemother. 2024; 68(7):e0056124.
PMID: 38899926 PMC: 11232381. DOI: 10.1128/aac.00561-24.
3-Hydroxykynurenine targets kainate receptors to promote defense against infection.
Parada-Kusz M, Clatworthy A, Goering E, Blackwood S, Shigeta J, Mashin E Nat Chem Biol. 2024; 20(12):1586-1596.
PMID: 38898166 DOI: 10.1038/s41589-024-01635-z.