» Articles » PMID: 18672104

Small Animal Bone Biomechanics

Overview
Journal Bone
Date 2008 Aug 2
PMID 18672104
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Animal models, in particular mice, offer the possibility of naturally achieving or genetically engineering a skeletal phenotype associated with disease and conducting destructive fracture tests on bone to determine the resulting change in bone's mechanical properties. Several recent developments, including nano- and micro-indentation testing, microtensile and microcompressive testing, and bending tests on notched whole bone specimens, offer the possibility to mechanically probe small animal bone and investigate the effects of aging, therapeutic treatments, disease, and genetic variation. In contrast to traditional strength tests on small animal bones, fracture mechanics tests display smaller variation and therefore offer the possibility of reducing sample sizes. This article provides an analysis of what such tests measure and proposes methods to reduce errors associated with testing smaller than ideal specimens.

Citing Articles

OPN, BSP, and Bone Quality-Structural, Biochemical, and Biomechanical Assessment in OPN, BSP, and DKO Mice.

Malaval L, Follet H, Farlay D, Gineyts E, Rizzo S, Thomas C Calcif Tissue Int. 2024; 115(1):63-77.

PMID: 38733411 DOI: 10.1007/s00223-024-01217-0.


Degradation of Bone Quality in a Transgenic Mouse Model of Alzheimer's Disease.

LLabre J, Gil C, Amatya N, Lagalwar S, Possidente B, Vashishth D J Bone Miner Res. 2022; 37(12):2548-2565.

PMID: 36250342 PMC: 9772191. DOI: 10.1002/jbmr.4723.


Bone strength and composition in spacefaring rodents: systematic review and meta-analysis.

Goldsmith M, Crooks S, Condon S, Willie B, Komarova S NPJ Microgravity. 2022; 8(1):10.

PMID: 35418128 PMC: 9008045. DOI: 10.1038/s41526-022-00195-7.


Non-Obese MKR Mouse Model of Type 2 Diabetes Reveals Skeletal Alterations in Mineralization and Material Properties.

Tice M, Bailey S, Sroga G, Gallagher E, Vashishth D JBMR Plus. 2022; 6(2):e10583.

PMID: 35229063 PMC: 8861985. DOI: 10.1002/jbm4.10583.


Induction and rescue of skeletal fragility in a high-fat diet mouse model of type 2 diabetes: An in vivo and in vitro approach.

LLabre J, Sroga G, Tice M, Vashishth D Bone. 2021; 156:116302.

PMID: 34952229 PMC: 8792372. DOI: 10.1016/j.bone.2021.116302.


References
1.
Schriefer J, Robling A, Warden S, Fournier A, Mason J, Turner C . A comparison of mechanical properties derived from multiple skeletal sites in mice. J Biomech. 2005; 38(3):467-75. DOI: 10.1016/j.jbiomech.2004.04.020. View

2.
Boyce T, Fyhrie D, Glotkowski M, Radin E, Schaffler M . Damage type and strain mode associations in human compact bone bending fatigue. J Orthop Res. 1998; 16(3):322-9. DOI: 10.1002/jor.1100160308. View

3.
Fantner G, Hassenkam T, Kindt J, Weaver J, Birkedal H, Pechenik L . Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. 2005; 4(8):612-6. DOI: 10.1038/nmat1428. View

4.
Tang B, Ngan A, Lu W . An improved method for the measurement of mechanical properties of bone by nanoindentation. J Mater Sci Mater Med. 2007; 18(9):1875-81. DOI: 10.1007/s10856-007-3031-8. View

5.
Ng A, Wang S, Turner C, Beamer W, Grynpas M . Bone quality and bone strength in BXH recombinant inbred mice. Calcif Tissue Int. 2007; 81(3):215-23. DOI: 10.1007/s00223-007-9047-8. View