» Articles » PMID: 18654467

Bottom-up Assembly of Large-area Nanowire Resonator Arrays

Overview
Journal Nat Nanotechnol
Specialty Biotechnology
Date 2008 Jul 26
PMID 18654467
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Directed-assembly of nanowire-based devices will enable the development of integrated circuits with new functions that extend well beyond mainstream digital logic. For example, nanoelectromechanical resonators are very attractive for chip-based sensor arrays because of their potential for ultrasensitive mass detection. In this letter, we introduce a new bottom-up assembly method to fabricate large-area nanoelectromechanical arrays each having over 2,000 single-nanowire resonators. The nanowires are synthesized and chemically functionalized before they are integrated onto a silicon chip at predetermined locations. Peptide nucleic acid probe molecules attached to the nanowires before assembly maintain their binding selectivity and recognize complementary oligonucleotide targets once the resonator array is assembled. The two types of cantilevered resonators we integrated here using silicon and rhodium nanowires had Q-factors of approximately 4,500 and approximately 1,150, respectively, in vacuum. Taken together, these results show that bottom-up nanowire assembly can offer a practical alternative to top-down fabrication for sensitive chip-based detection.

Citing Articles

Cryogenic multiplexing using selective area grown nanowires.

Olsteins D, Nagda G, Carrad D, Beznasyuk D, Petersen C, Marti-Sanchez S Nat Commun. 2023; 14(1):7738.

PMID: 38007553 PMC: 10676361. DOI: 10.1038/s41467-023-43551-1.


Sensing Capabilities of Single Nanowires Studied with Correlative Light and Electron Microscopy.

Vogl L, Schweizer P, Denninger P, Richter G, Spiecker E ACS Nano. 2022; 16(11):18110-18118.

PMID: 36282103 PMC: 9706674. DOI: 10.1021/acsnano.2c04848.


Nanomechanical Resonators: Toward Atomic Scale.

Xu B, Zhang P, Zhu J, Liu Z, Eichler A, Zheng X ACS Nano. 2022; 16(10):15545-15585.

PMID: 36054880 PMC: 9620412. DOI: 10.1021/acsnano.2c01673.


A 3-D NanoMagnetoElectrokinetic model for ultra-high precision assembly of ferromagnetic NWs using magnetic-field assisted dielectrophoresis.

Singh S, Rajib M, Drobitch J, Atulasimha J, Bandyopadhyay S, Subramanian A RSC Adv. 2022; 10(65):39763-39770.

PMID: 35515396 PMC: 9057435. DOI: 10.1039/d0ra08381j.


Optical Transduction for Vertical Nanowire Resonators.

Molina J, Ramos D, Gil-Santos E, Escobar J, Ruz J, Tamayo J Nano Lett. 2020; 20(4):2359-2369.

PMID: 32191041 PMC: 7146857. DOI: 10.1021/acs.nanolett.9b04909.


References
1.
Huang Y, Duan X, Wei Q, Lieber C . Directed assembly of one-dimensional nanostructures into functional networks. Science. 2001; 291(5504):630-3. DOI: 10.1126/science.291.5504.630. View

2.
Yang Y, Callegari C, Feng X, Ekinci K, Roukes M . Zeptogram-scale nanomechanical mass sensing. Nano Lett. 2006; 6(4):583-6. DOI: 10.1021/nl052134m. View

3.
Yin Y, Lu Y, Gates B, Xia Y . Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc. 2001; 123(36):8718-29. DOI: 10.1021/ja011048v. View

4.
Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias T, McEuen P . A tunable carbon nanotube electromechanical oscillator. Nature. 2004; 431(7006):284-7. DOI: 10.1038/nature02905. View

5.
Craighead H . Nanoelectromechanical systems. Science. 2000; 290(5496):1532-6. DOI: 10.1126/science.290.5496.1532. View