» Articles » PMID: 31057925

Magnetic Field Sensors Using Arrays of Electrospun Magnetoelectric Janus Nanowires

Overview
Date 2019 May 7
PMID 31057925
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

The fabrication and characterization of the first magnetoelectric sensors utilizing arrays of Janus magnetoelectric composite nanowires composed of barium titanate and cobalt ferrite are presented. By utilizing magnetoelectric nanowires suspended across electrodes above the substrate, substrate clamping is reduced when compared to layered thin-film architectures; this results in enhanced magnetoelectric coupling. Janus magnetoelectric nanowires are fabricated by sol-gel electrospinning, and their length is controlled through the electrospinning and calcination conditions. Using a directed nanomanufacturing approach, the nanowires are then assembled onto pre-patterned metal electrodes on a silicon substrate using dielectrophoresis. Using this process, functional magnetic field sensors are formed by connecting many nanowires in parallel. The observed magnetic field sensitivity from the parallel array of nanowires is 0.514 ± .027 mV Oe at 1 kHz, which translates to a magnetoelectric coefficient of 514 ± 27 mV cm Oe.

Citing Articles

Ferroelectric and Non-Linear Optical Nanofibers by Electrospinning: From Inorganics to Molecular Crystals.

Baptista R, de Matos Gomes E, Belsley M, Almeida B Nanomaterials (Basel). 2025; 15(5).

PMID: 40072212 PMC: 11901488. DOI: 10.3390/nano15050409.


Overcoming the rise in local deposit resistance during electrophoretic deposition suspension replenishing.

Tiwari P, Ferson N, Arnold D, Andrew J Front Chem. 2022; 10:970407.

PMID: 36092676 PMC: 9459854. DOI: 10.3389/fchem.2022.970407.


In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles.

Bok I, Haber I, Qu X, Hai A Sci Rep. 2022; 12(1):8386.

PMID: 35589877 PMC: 9120189. DOI: 10.1038/s41598-022-12303-4.


Template-Assisted Iron Nanowire Formation at Different Electrolyte Temperatures.

Kac M, Mis A, Dubiel B, Kowalski K, Zarzycki A, Dobosz I Materials (Basel). 2021; 14(15).

PMID: 34361274 PMC: 8348010. DOI: 10.3390/ma14154080.

References
1.
Albrecht D, Sah R, Bhatia S . Geometric and material determinants of patterning efficiency by dielectrophoresis. Biophys J. 2004; 87(4):2131-47. PMC: 1304640. DOI: 10.1529/biophysj.104.039511. View

2.
Spaldin N, Fiebig M . Materials science. The renaissance of magnetoelectric multiferroics. Science. 2005; 309(5733):391-2. DOI: 10.1126/science.1113357. View

3.
Li M, Bhiladvala R, Morrow T, Sioss J, Lew K, Redwing J . Bottom-up assembly of large-area nanowire resonator arrays. Nat Nanotechnol. 2008; 3(2):88-92. PMC: 2656674. DOI: 10.1038/nnano.2008.26. View

4.
Freer E, Grachev O, Duan X, Martin S, Stumbo D . High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat Nanotechnol. 2010; 5(7):525-30. DOI: 10.1038/nnano.2010.106. View

5.
Liu B, Hu B, Du Z . Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowires. Chem Commun (Camb). 2011; 47(28):8166-8. DOI: 10.1039/c1cc11896j. View