» Articles » PMID: 15122880

Poliovirus RNA-dependent RNA Polymerase (3Dpol): Kinetic, Thermodynamic, and Structural Analysis of Ribonucleotide Selection

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2004 May 5
PMID 15122880
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

We have performed a kinetic and thermodynamic analysis of 3D(pol) derivatives containing substitutions in the ribose-binding pocket with ATP analogues containing correct and incorrect sugar configurations. We find that Asp-238, a residue in structural motif A that is conserved in all RNA-dependent RNA polymerases, is a key determinant of polymerase fidelity. Alterations in the position of the Asp-238 side chain destabilize the catalytically competent 3D(pol)-primer/template-NTP complex and reduce the efficiency of phosphoryl transfer. The reduction in phosphoryl transfer may be a reflection of increased mobility of other residues in motif A that are required for stabilizing the triphosphate moiety of the nucleotide substrate in the active conformation. We present a structural model to explain how Asp-238 functions to select nucleotides with a correct sugar configuration and a correct base. We propose that this mechanism is employed by all RNA-dependent RNA polymerases. We discuss the possibility that all nucleic acid polymerases with the canonical "palm"-based active site employ a similar mechanism to maximize fidelity.

Citing Articles

Mechanism of forced-copy-choice RNA recombination by enteroviral RNA-dependent RNA polymerases.

Arnold J, Martinez A, Jain A, Liu X, Moustafa I, Cameron C bioRxiv. 2025; .

PMID: 39974949 PMC: 11839138. DOI: 10.1101/2025.02.07.637143.


Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies.

Zitzmann C, Dachert C, Schmid B, van der Schaar H, van Hemert M, Perelson A PLoS Comput Biol. 2023; 19(4):e1010423.

PMID: 37014904 PMC: 10104377. DOI: 10.1371/journal.pcbi.1010423.


In situ structures of polymerase complex of mammalian reovirus illuminate RdRp activation and transcription regulation.

Bao K, Zhang X, Li D, Sun W, Sun Z, Wang J Proc Natl Acad Sci U S A. 2022; 119(50):e2203054119.

PMID: 36469786 PMC: 9897473. DOI: 10.1073/pnas.2203054119.


Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies.

Zitzmann C, Dachert C, Schmid B, van der Schaar H, van Hemert M, Perelson A bioRxiv. 2022; .

PMID: 35923314 PMC: 9347285. DOI: 10.1101/2022.07.25.501353.


Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective.

Seifert M, Bera S, van Nies P, Kirchdoerfer R, Shannon A, Le T Elife. 2021; 10.

PMID: 34617885 PMC: 8497053. DOI: 10.7554/eLife.70968.


References
1.
Bressanelli S, Tomei L, Roussel A, Incitti I, Vitale R, Mathieu M . Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci U S A. 1999; 96(23):13034-9. PMC: 23895. DOI: 10.1073/pnas.96.23.13034. View

2.
Lesburg C, Cable M, Ferrari E, Hong Z, Mannarino A, Weber P . Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol. 1999; 6(10):937-43. DOI: 10.1038/13305. View

3.
Cheetham G, Steitz T . Structure of a transcribing T7 RNA polymerase initiation complex. Science. 1999; 286(5448):2305-9. DOI: 10.1126/science.286.5448.2305. View

4.
Arnold J, Cameron C . Poliovirus RNA-dependent RNA polymerase (3D(pol)). Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub). J Biol Chem. 2000; 275(8):5329-36. DOI: 10.1074/jbc.275.8.5329. View

5.
Gohara D, Crotty S, Arnold J, Yoder J, Andino R, Cameron C . Poliovirus RNA-dependent RNA polymerase (3Dpol): structural, biochemical, and biological analysis of conserved structural motifs A and B. J Biol Chem. 2000; 275(33):25523-32. DOI: 10.1074/jbc.M002671200. View