» Articles » PMID: 18303028

The Identification and Location of Succinyl Residues and the Characterization of the Interior Arabinan Region Allow for a Model of the Complete Primary Structure of Mycobacterium Tuberculosis Mycolyl Arabinogalactan

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2008 Feb 28
PMID 18303028
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

The complex cell wall of Mycobacterium tuberculosis is the hallmark of acid fast bacteria and is responsible for much of its physiological characteristics. Hence, much effort has been made to determine its primary structure. Such studies have been hampered by its extreme complexity. Also, its insolubility leads to difficulties determining the presence or absence of base labile groups. We have used an endogenous arabinase to solubilize the arabinan region of the cell wall and have shown using mass spectrometry and NMR that succinyl esters are present on O2 of the inner-branched 1,3,5-alpha-d-arabinofuranosyl residues. In addition, an inner arabinan region of 14 linear alpha-1,5 arabinofuranosyl residues has been identified. These and earlier results now allow the presentation of a model of the entire primary structure of the mycobacterial mycolyl arabinogalactan highlighted by three arabinan chains of 31 residues each.

Citing Articles

Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution.

Beaud Benyahia B, Taib N, Beloin C, Gribaldo S Nat Rev Microbiol. 2024; 23(1):41-56.

PMID: 39198708 DOI: 10.1038/s41579-024-01088-0.


Regulatory role of MtrA on dormancy/resuscitation revealed by a novel target gene-mining strategy.

Fu X, Wan X, Memon A, Fan X, Sun Q, Chen H Front Microbiol. 2024; 15:1415554.

PMID: 38952446 PMC: 11215152. DOI: 10.3389/fmicb.2024.1415554.


Layered complexity, reorganisational ability and self-healing mechanisms of heteropolysaccharide solutions.

Ivashchenko O Sci Rep. 2024; 14(1):13957.

PMID: 38886515 PMC: 11183217. DOI: 10.1038/s41598-024-64873-0.


Identification and characterization of endo-α-, exo-α-, and exo-β-D-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria.

Shimokawa M, Ishiwata A, Kashima T, Nakashima C, Li J, Fukushima R Nat Commun. 2023; 14(1):5803.

PMID: 37726269 PMC: 10509167. DOI: 10.1038/s41467-023-41431-2.


Role of succinyl substituents in the mannose-capping of lipoarabinomannan and control of inflammation in Mycobacterium tuberculosis infection.

Palcekova Z, Obregon-Henao A, De K, Walz A, Lam H, Philp J PLoS Pathog. 2023; 19(9):e1011636.

PMID: 37669276 PMC: 10503756. DOI: 10.1371/journal.ppat.1011636.


References
1.
VILKAS E . [Walls of Mycobacterium tuberculosis. II. Demonstration of a mycolate of arabinobiose and a glucan in the walls of M. tuberculosis H37 Ra]. Bull Soc Chim Biol (Paris). 1970; 52(2):145-51. View

2.
DMITRIEV B, Ehlers S, Rietschel E, Brennan P . Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int J Med Microbiol. 2000; 290(3):251-8. DOI: 10.1016/S1438-4221(00)80122-8. View

3.
Draper P, Khoo K, Chatterjee D, Dell A, Morris H . Galactosamine in walls of slow-growing mycobacteria. Biochem J. 1997; 327 ( Pt 2):519-25. PMC: 1218825. DOI: 10.1042/bj3270519. View

4.
Dong X, Bhamidi S, Scherman M, Xin Y, McNeil M . Development of a quantitative assay for mycobacterial endogenous arabinase and ensuing studies of arabinase levels and arabinan metabolism in Mycobacterium smegmatis. Appl Environ Microbiol. 2006; 72(4):2601-5. PMC: 1448983. DOI: 10.1128/AEM.72.4.2601-2605.2006. View

5.
Chatterjee D, Bozic C, McNeil M, Brennan P . Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J Biol Chem. 1991; 266(15):9652-60. View