» Articles » PMID: 18287519

GEF-H1 Couples Nocodazole-induced Microtubule Disassembly to Cell Contractility Via RhoA

Overview
Journal Mol Biol Cell
Date 2008 Feb 22
PMID 18287519
Citations 186
Authors
Affiliations
Soon will be listed here.
Abstract

The RhoA GTPase plays a vital role in assembly of contractile actin-myosin filaments (stress fibers) and of associated focal adhesion complexes of adherent monolayer cells in culture. GEF-H1 is a microtubule-associated guanine nucleotide exchange factor that activates RhoA upon release from microtubules. The overexpression of GEF-H1 deficient in microtubule binding or treatment of HeLa cells with nocodazole to induce microtubule depolymerization results in Rho-dependent actin stress fiber formation and contractile cell morphology. However, whether GEF-H1 is required and sufficient to mediate nocodazole-induced contractility remains unclear. We establish here that siRNA-mediated depletion of GEF-H1 in HeLa cells prevents nocodazole-induced cell contraction. Furthermore, the nocodazole-induced activation of RhoA and Rho-associated kinase (ROCK) that mediates phosphorylation of myosin regulatory light chain (MLC) is impaired in GEF-H1-depleted cells. Conversely, RhoA activation and contractility are rescued by reintroduction of siRNA-resistant GEF-H1. Our studies reveal a critical role for a GEF-H1/RhoA/ROCK/MLC signaling pathway in mediating nocodazole-induced cell contractility.

Citing Articles

De novo identification of universal cell mechanics gene signatures.

Urbanska M, Ge Y, Winzi M, Abuhattum S, Ali S, Herbig M Elife. 2025; 12.

PMID: 39960760 PMC: 11832173. DOI: 10.7554/eLife.87930.


Diverse microtubule-destabilizing drugs induce equivalent molecular pathway responses in endothelial cells.

Horin L, Sonnett M, Li B, Mitchison T bioRxiv. 2025; .

PMID: 39896568 PMC: 11785092. DOI: 10.1101/2025.01.22.632572.


Cell adhesion and spreading on fluid membranes through microtubules-dependent mechanotransduction.

Mikhajlov O, Adar R, Tatulea-Codrean M, Mace A, Manzi J, Tabarin F Nat Commun. 2025; 16(1):1201.

PMID: 39885125 PMC: 11782702. DOI: 10.1038/s41467-025-56343-6.


Dynamic Coupling of MAPK Signaling to the Guanine Nucleotide Exchange Factor GEF-H1.

Leguay K, Kent O Onco Targets Ther. 2025; 18:147-159.

PMID: 39882405 PMC: 11776410. DOI: 10.2147/OTT.S496228.


α-catenin phosphorylation is elevated during mitosis to resist apical rounding and epithelial barrier leak.

Le P, Quinn J, Flozak A, Steffeck A, Huang C, Gottardi C Biol Open. 2025; 14(1.

PMID: 39782767 PMC: 11744050. DOI: 10.1242/bio.061726.


References
1.
Riento K, Ridley A . Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003; 4(6):446-56. DOI: 10.1038/nrm1128. View

2.
Wang N, Naruse K, Stamenovic D, Fredberg J, Mijailovich S, Tolic-Norrelykke I . Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci U S A. 2001; 98(14):7765-70. PMC: 35416. DOI: 10.1073/pnas.141199598. View

3.
Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T . Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996; 271(34):20246-9. DOI: 10.1074/jbc.271.34.20246. View

4.
Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M . Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996; 273(5272):245-8. DOI: 10.1126/science.273.5272.245. View

5.
Zheng Y . Dbl family guanine nucleotide exchange factors. Trends Biochem Sci. 2001; 26(12):724-32. DOI: 10.1016/s0968-0004(01)01973-9. View