» Articles » PMID: 18248669

Correction of Technical Bias in Clinical Microarray Data Improves Concordance with Known Biological Information

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2008 Feb 6
PMID 18248669
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

The performance of gene expression microarrays has been well characterized using controlled reference samples, but the performance on clinical samples remains less clear. We identified sources of technical bias affecting many genes in concert, thus causing spurious correlations in clinical data sets and false associations between genes and clinical variables. We developed a method to correct for technical bias in clinical microarray data, which increased concordance with known biological relationships in multiple data sets.

Citing Articles

Identification of age-specific biomarkers of spinal cord injury: A bioinformatics analysis of young and aged mice models.

Miao W, Su Z, Cheng H Brain Behav. 2023; 13(12):e3293.

PMID: 38032706 PMC: 10726893. DOI: 10.1002/brb3.3293.


Metastatic recurrence in colorectal cancer arises from residual EMP1 cells.

Canellas-Socias A, Cortina C, Hernando-Momblona X, Palomo-Ponce S, Mulholland E, Turon G Nature. 2022; 611(7936):603-613.

PMID: 36352230 PMC: 7616986. DOI: 10.1038/s41586-022-05402-9.


Autophagy-mediated NCOR1 degradation is required for brown fat maturation and thermogenesis.

Sabate-Perez A, Romero M, Sanchez-Fernandez-de-Landa P, Carobbio S, Mouratidis M, Sala D Autophagy. 2022; 19(3):904-925.

PMID: 35947488 PMC: 9980505. DOI: 10.1080/15548627.2022.2111081.


Macrophage inflammation resolution requires CPEB4-directed offsetting of mRNA degradation.

Suner C, Sibilio A, Martin J, Castellazzi C, Reina O, Dotu I Elife. 2022; 11.

PMID: 35442882 PMC: 9094754. DOI: 10.7554/eLife.75873.


Immune translational control by CPEB4 regulates intestinal inflammation resolution and colorectal cancer development.

Sibilio A, Suner C, Fernandez-Alfara M, Martin J, Berenguer A, Calon A iScience. 2022; 25(2):103790.

PMID: 35243213 PMC: 8859527. DOI: 10.1016/j.isci.2022.103790.


References
1.
Lim W, Wang K, Lefebvre C, Califano A . Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics. 2007; 23(13):i282-8. DOI: 10.1093/bioinformatics/btm201. View

2.
Skvortsov D, Abdueva D, Curtis C, Schaub B, Tavare S . Explaining differences in saturation levels for Affymetrix GeneChip arrays. Nucleic Acids Res. 2007; 35(12):4154-63. PMC: 1919478. DOI: 10.1093/nar/gkm348. View

3.
Jones L, Goldstein D, Hughes G, Strand A, Collin F, Dunnett S . Assessment of the relationship between pre-chip and post-chip quality measures for Affymetrix GeneChip expression data. BMC Bioinformatics. 2006; 7:211. PMC: 1524996. DOI: 10.1186/1471-2105-7-211. View

4.
Cope L, Irizarry R, Jaffee H, Wu Z, Speed T . A benchmark for Affymetrix GeneChip expression measures. Bioinformatics. 2004; 20(3):323-31. DOI: 10.1093/bioinformatics/btg410. View

5.
Lee M, Kuo F, Whitmore G, Sklar J . Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci U S A. 2000; 97(18):9834-9. PMC: 27599. DOI: 10.1073/pnas.97.18.9834. View