» Articles » PMID: 17929059

GalEa Retrotransposons from Galatheid Squat Lobsters (Decapoda, Anomura) Define a New Clade of Ty1/copia-like Elements Restricted to Aquatic Species

Overview
Specialty Genetics
Date 2007 Oct 12
PMID 17929059
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Crustacean species have not been examined in great detail for their transposable elements content. Here we focus on galatheid crabs, which are one of the most diverse and widespread taxonomic groups of Decapoda. Ty1/copia retrotransposons are a diverse and taxonomically dispersed group. Using degenerate primers, we isolated several DNA fragments that show homology with Ty1/copia retroelements reverse transcriptase gene. We named the corresponding elements from which they originated GalEa1 to GalEa3 and analyzed one of them further by isolating various clones containing segments of GalEa1. This is the first LTR retrotransposon described in crustacean genome. Nucleotide sequencing of the clones revealed that GalEa1 has LTRs (124 bp) and that the internal sequence (4,421 bp) includes a single large ORF containing gag and pol regions. Further screening identified highly related elements in six of the nine galatheid species studied. By performing BLAST searches on genome databases, we could also identify GalEa-like elements in some fishes and Urochordata genomes. These elements define a new clade of Ty1/copia retrotransposons that differs from all other Ty1/copia elements and that seems to be restricted to aquatic species.

Citing Articles

Marine vs. terrestrial: links between the environment and the diversity of Copia retrotransposon in metazoans.

Klai K, Farhat S, Lamothe L, Higuet D, Bonnivard E Mob DNA. 2025; 16(1):9.

PMID: 40055832 PMC: 11889832. DOI: 10.1186/s13100-025-00346-z.


Comparative genomic and transcriptomic analyses of transposable elements in polychaetous annelids highlight LTR retrotransposon diversity and evolution.

Filee J, Farhat S, Higuet D, Teysset L, Marie D, Thomas-Bulle C Mob DNA. 2021; 12(1):24.

PMID: 34715903 PMC: 8556966. DOI: 10.1186/s13100-021-00252-0.


Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi.

Aroh O, Halanych K BMC Genomics. 2021; 22(1):466.

PMID: 34157969 PMC: 8220671. DOI: 10.1186/s12864-021-07749-1.


Insertion Hot Spots of Retrotransposon and Chromosomal Diversifications among the Antarctic Teleosts Nototheniidae.

Auvinet J, Graca P, Ghigliotti L, Pisano E, Dettai A, Ozouf-Costaz C Int J Mol Sci. 2019; 20(3).

PMID: 30736325 PMC: 6387122. DOI: 10.3390/ijms20030701.


Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics.

Thomas-Bulle C, Piednoel M, Donnart T, Filee J, Jollivet D, Bonnivard E BMC Genomics. 2018; 19(1):821.

PMID: 30442098 PMC: 6238403. DOI: 10.1186/s12864-018-5200-1.


References
1.
Halaimia-Toumi N, Casse N, Demattei M, Renault S, Pradier E, Bigot Y . The GC-rich transposon Bytmar1 from the deep-sea hydrothermal crab, Bythograea thermydron, may encode three transposase isoforms from a single ORF. J Mol Evol. 2004; 59(6):747-60. DOI: 10.1007/s00239-004-2665-0. View

2.
Jordan I, Rogozin I, Glazko G, Koonin E . Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003; 19(2):68-72. DOI: 10.1016/s0168-9525(02)00006-9. View

3.
BURKE W, Malik H, Jones J, Eickbush T . The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Mol Biol Evol. 1999; 16(4):502-11. DOI: 10.1093/oxfordjournals.molbev.a026132. View

4.
van de Lagemaat L, Landry J, Mager D, Medstrand P . Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 2003; 19(10):530-6. DOI: 10.1016/j.tig.2003.08.004. View

5.
Malik H, Eickbush T . Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 2001; 11(7):1187-97. DOI: 10.1101/gr.185101. View