» Articles » PMID: 1379359

Ty1-copia Group Retrotransposons Are Ubiquitous and Heterogeneous in Higher Plants

Overview
Specialty Biochemistry
Date 1992 Jul 25
PMID 1379359
Citations 100
Authors
Affiliations
Soon will be listed here.
Abstract

We have used the polymerase chain reaction to isolate fragments of Ty1-copia group retrotransposons from a wide variety of members of the higher plant kingdom. 56 out of 57 species tested generate an amplified fragment of the size expected for reverse transcriptase fragments of Ty1-copia group retrotransposons. Sequence analysis of subclones shows that the PCR fragments display varying degrees of sequence heterogeneity. Sequence heterogeneity therefore seems a general property of Ty1-copia group retrotransposons of higher plants, in contrast to the limited diversity seen in retrotransposons of Saccharomyces cerevisiae and Drosophila melanogaster. Phylogenetic analysis of all these sequences shows, with some significant exceptions, that the degree of sequence divergence in the retrotransposon populations between any pair of species is proportional to the evolutionary distance between those species. This implies that sequence divergence during vertical transmission of Ty1-copia group retrotransposons within plant lineages has been a major factor in the evolution of Ty1-copia group retrotransposons in higher plants. Additionally, we suggest that horizontal transmission of this transposon group between different species has also played a role in this process.

Citing Articles

The repetitive DNA sequence landscape and DNA methylation in chromosomes of an apomictic tropical forage grass, .

Rathore P, Schwarzacher T, Heslop-Harrison J, Bhat V, Tomaszewska P Front Plant Sci. 2022; 13:952968.

PMID: 36186069 PMC: 9521199. DOI: 10.3389/fpls.2022.952968.


The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes.

Zhang F, Chen F, Schwarzacher T, Heslop-Harrison J, Teng N Ann Bot. 2022; 131(1):215-228.

PMID: 35639931 PMC: 9904347. DOI: 10.1093/aob/mcac066.


Genetic Diversity and Population Structures in Chinese Miniature Pigs Revealed by SINE Retrotransposon Insertion Polymorphisms, a New Type of Genetic Markers.

Chen C, Wang X, Zong W, dAlessandro E, Giosa D, Guo Y Animals (Basel). 2021; 11(4).

PMID: 33921134 PMC: 8071531. DOI: 10.3390/ani11041136.


Clustered and dispersed chromosomal distribution of the two classes of Revolver transposon family in rye (Secale cereale).

Tomita M, Kanzaki T, Tanaka E J Appl Genet. 2021; 62(3):365-372.

PMID: 33694103 DOI: 10.1007/s13353-021-00617-4.


Retrotransposable Elements: DNA Fingerprinting and the Assessment of Genetic Diversity.

Kalendar R, Muterko A, Boronnikova S Methods Mol Biol. 2020; 2222:263-286.

PMID: 33301099 DOI: 10.1007/978-1-0716-0997-2_15.


References
1.
Grandbastien M . Retroelements in higher plants. Trends Genet. 1992; 8(3):103-8. DOI: 10.1016/0168-9525(92)90198-d. View

2.
Devereux J, Haeberli P, SMITHIES O . A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984; 12(1 Pt 1):387-95. PMC: 321012. DOI: 10.1093/nar/12.1part1.387. View

3.
Flavell A, Smith D, Kumar A . Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet. 1992; 231(2):233-42. DOI: 10.1007/BF00279796. View

4.
Xiong Y, Eickbush T . Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990; 9(10):3353-62. PMC: 552073. DOI: 10.1002/j.1460-2075.1990.tb07536.x. View

5.
Konieczny A, Voytas D, Cummings M, Ausubel F . A superfamily of Arabidopsis thaliana retrotransposons. Genetics. 1991; 127(4):801-9. PMC: 1204407. DOI: 10.1093/genetics/127.4.801. View