» Articles » PMID: 17908934

Telomerase Repeat Addition Processivity is Increased at Critically Short Telomeres in a Tel1-dependent Manner in Saccharomyces Cerevisiae

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2007 Oct 3
PMID 17908934
Citations 93
Authors
Affiliations
Soon will be listed here.
Abstract

Telomerase is the ribonucleoprotein enzyme that elongates telomeres to counteract telomere shortening. The core enzyme consists of a reverse transcriptase protein subunit and an RNA subunit. The RNA subunit contains a short region that is used as a template by the reverse transcriptase to add short, tandem, G-rich repeats to the 3' ends of telomeres. By coexpressing two RNA subunits that differ in the telomeric repeat sequence specified and examining the telomere extensions after one cell cycle, we determined that Saccharomyces cerevisiae telomerase can dissociate and reassociate from a given telomere during one cell cycle. We also confirmed that telomerase is nonprocessive in terms of telomeric repeat addition. However, repeat addition processivity is significantly increased at extremely short telomeres, a process that is dependent on the ATM-ortholog Tel1. We propose that this enhancement of telomerase processivity at short telomeres serves to rapidly elongate critically short telomeres.

Citing Articles

The canonical RPA complex interacts with Est3 to regulate yeast telomerase activity.

Moeller-McCoy C, Wieser T, Lubin J, Gillespie A, Ramirez J, Paschini M Proc Natl Acad Sci U S A. 2025; 122(7):e2419309122.

PMID: 39913192 PMC: 11848354. DOI: 10.1073/pnas.2419309122.


Interstitial telomeric sequences promote gross chromosomal rearrangement via multiple mechanisms.

Rosas Bringas F, Yin Z, Yao Y, Boudeman J, Ollivaud S, Chang M Proc Natl Acad Sci U S A. 2024; 121(49):e2407314121.

PMID: 39602274 PMC: 11626172. DOI: 10.1073/pnas.2407314121.


Telomere DNA length regulation is influenced by seasonal temperature differences in short-lived but not in long-lived reef-building corals.

Rouan A, Pousse M, Djerbi N, Porro B, Bourdin G, Carradec Q Nat Commun. 2023; 14(1):3038.

PMID: 37263999 PMC: 10235076. DOI: 10.1038/s41467-023-38499-1.


Large-Scale Detection of Telomeric Motif Sequences in Genomic Data Using TelFinder.

Sun Q, Wang H, Tao S, Xi X Microbiol Spectr. 2023; :e0392822.

PMID: 36847562 PMC: 10100673. DOI: 10.1128/spectrum.03928-22.


ATRX modulates the escape from a telomere crisis.

Geiller H, Harvey A, Jones R, Grimstead J, Cleal K, Hendrickson E PLoS Genet. 2022; 18(11):e1010485.

PMID: 36350851 PMC: 9678338. DOI: 10.1371/journal.pgen.1010485.


References
1.
Wang S, Zakian V . Sequencing of Saccharomyces telomeres cloned using T4 DNA polymerase reveals two domains. Mol Cell Biol. 1990; 10(8):4415-9. PMC: 361005. DOI: 10.1128/mcb.10.8.4415-4419.1990. View

2.
Forstemann K, Lingner J . Molecular basis for telomere repeat divergence in budding yeast. Mol Cell Biol. 2001; 21(21):7277-86. PMC: 99902. DOI: 10.1128/MCB.21.21.7277-7286.2001. View

3.
Nugent C, Hughes T, Lue N, Lundblad V . Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science. 1996; 274(5285):249-52. DOI: 10.1126/science.274.5285.249. View

4.
Pennock E, Buckley K, Lundblad V . Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell. 2001; 104(3):387-96. DOI: 10.1016/s0092-8674(01)00226-4. View

5.
Counter C, Meyerson M, Eaton E, Weinberg R . The catalytic subunit of yeast telomerase. Proc Natl Acad Sci U S A. 1997; 94(17):9202-7. PMC: 23115. DOI: 10.1073/pnas.94.17.9202. View