» Articles » PMID: 17889646

Heat Shock Factor 1 is a Powerful Multifaceted Modifier of Carcinogenesis

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2007 Sep 25
PMID 17889646
Citations 461
Authors
Affiliations
Soon will be listed here.
Abstract

Heat shock factor 1 (HSF1) is the master regulator of the heat shock response in eukaryotes, a very highly conserved protective mechanism. HSF1 function increases survival under a great many pathophysiological conditions. How it might be involved in malignancy remains largely unexplored. We report that eliminating HSF1 protects mice from tumors induced by mutations of the RAS oncogene or a hot spot mutation in the tumor suppressor p53. In cell culture, HSF1 supports malignant transformation by orchestrating a network of core cellular functions including proliferation, survival, protein synthesis, and glucose metabolism. The striking effects of HSF1 on oncogenic transformation are not limited to mouse systems or tumor initiation; human cancer lines of diverse origins show much greater dependence on HSF1 function to maintain proliferation and survival than their nontransformed counterparts. While it enhances organismal survival and longevity under most circumstances, HSF1 has the opposite effect in supporting the lethal phenomenon of cancer.

Citing Articles

HSF1 at the crossroads of chemoresistance: from current insights to future horizons in cell death mechanisms.

Ghai S, Shrestha R, Su K Front Cell Dev Biol. 2025; 12:1500880.

PMID: 39850800 PMC: 11754285. DOI: 10.3389/fcell.2024.1500880.


The molecular mechanism of temperature-dependent phase separation of heat shock factor 1.

Ren Q, Li L, Liu L, Li J, Shi C, Sun Y Nat Chem Biol. 2025; .

PMID: 39794489 DOI: 10.1038/s41589-024-01806-y.


HSP90 stabilizes visual cycle retinol dehydrogenase 5 in the endoplasmic reticulum by inhibiting its degradation during autophagy.

Jia X, Wang Y, Jiang M, Chen D, Shang G, Liu B J Biol Chem. 2024; 301(2):108126.

PMID: 39725039 PMC: 11787647. DOI: 10.1016/j.jbc.2024.108126.


Chaperones vs. oxidative stress in the pathobiology of ischemic stroke.

Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada M, Ogneva N Front Mol Neurosci. 2024; 17:1513084.

PMID: 39723236 PMC: 11668803. DOI: 10.3389/fnmol.2024.1513084.


SE-lncRNAs in Cancer: Classification, Subcellular Localisation, Function and Corresponding TFs.

Bao Y, Teng S, Zhai H, Zhang Y, Xu Y, Li C J Cell Mol Med. 2024; 28(24):e70296.

PMID: 39690143 PMC: 11652108. DOI: 10.1111/jcmm.70296.


References
1.
Elenbaas B, Spirio L, Koerner F, Fleming M, Zimonjic D, Donaher J . Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 2001; 15(1):50-65. PMC: 312602. DOI: 10.1101/gad.828901. View

2.
Tang D, Khaleque M, Jones E, Theriault J, Li C, Wong W . Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones. 2005; 10(1):46-58. PMC: 1074571. DOI: 10.1379/csc-44r.1. View

3.
Bissell M, Rambeck W, White R, Bassham J . Glycerol phosphate shuttle in virus-transformed cells in culture. Science. 1976; 191(4229):856-8. DOI: 10.1126/science.175441. View

4.
Gatenby R, Gillies R . Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 2004; 4(11):891-9. DOI: 10.1038/nrc1478. View

5.
Beausejour C, Campisi J . Ageing: balancing regeneration and cancer. Nature. 2006; 443(7110):404-5. DOI: 10.1038/nature05221. View