» Articles » PMID: 17803943

A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Bacteria

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2007 Sep 7
PMID 17803943
Citations 75
Authors
Affiliations
Soon will be listed here.
Abstract

A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV sigma factor sigma(E) and its cognate anti-sigma ChrR. Crystal structures of the sigma(E)/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-sigma domain (ASD) binds a Zn(2+) ion, contacts sigma(E), and is sufficient to inhibit sigma(E)-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn(2+), and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV anti-sigmas. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate sigma factor.

Citing Articles

Structural basis for regulation of a CBASS-CRISPR-Cas defense island by a transmembrane anti-σ factor and its ECF σ partner.

Bernal-Bernal D, Pantoja-Uceda D, Lopez-Alonso J, Lopez-Rojo A, Lopez-Ruiz J, Galbis-Martinez M Sci Adv. 2024; 10(43):eadp1053.

PMID: 39454004 PMC: 11506125. DOI: 10.1126/sciadv.adp1053.


Computational Analysis of the Tripartite Interaction of Phasins (PhaP4 and 5)-Sigma Factor (σ)-DNA of Sp7.

Aguilar-Carrillo Y, Soto-Urzua L, Martinez-Martinez M, Becerril-Ramirez M, Martinez-Morales L Polymers (Basel). 2024; 16(5).

PMID: 38475295 PMC: 10934627. DOI: 10.3390/polym16050611.


Expanding the genetic toolkit helps dissect a global stress response in the early-branching species .

Ponath F, Zhu Y, Cosi V, Vogel J Proc Natl Acad Sci U S A. 2022; 119(40):e2201460119.

PMID: 36161895 PMC: 9546586. DOI: 10.1073/pnas.2201460119.


An Extracytoplasmic Function Sigma Factor Required for Full Virulence in Xanthomonas citri pv. citri.

Lima L, Pereira J, Fasabi Flores A, Lorenzetti A, Boechat A, Pereda M J Bacteriol. 2022; 204(5):e0062421.

PMID: 35446118 PMC: 9112872. DOI: 10.1128/jb.00624-21.


Mechanisms of Action of Non-Canonical ECF Sigma Factors.

Marcos-Torres F, Moraleda-Munoz A, Contreras-Moreno F, Munoz-Dorado J, Perez J Int J Mol Sci. 2022; 23(7).

PMID: 35408957 PMC: 8999054. DOI: 10.3390/ijms23073601.


References
1.
Alberts I, Nadassy K, Wodak S . Analysis of zinc binding sites in protein crystal structures. Protein Sci. 1999; 7(8):1700-16. PMC: 2144076. DOI: 10.1002/pro.5560070805. View

2.
Kang J, Paget M, Seok Y, Hahn M, Bae J, Hahn J . RsrA, an anti-sigma factor regulated by redox change. EMBO J. 1999; 18(15):4292-8. PMC: 1171505. DOI: 10.1093/emboj/18.15.4292. View

3.
Jones D . Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999; 292(2):195-202. DOI: 10.1006/jmbi.1999.3091. View

4.
Newman J, Falkowski M, Schilke B, Anthony L, Donohue T . The Rhodobacter sphaeroides ECF sigma factor, sigma(E), and the target promoters cycA P3 and rpoE P1. J Mol Biol. 1999; 294(2):307-20. DOI: 10.1006/jmbi.1999.3263. View

5.
Cuff J, Barton G . Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins. 2000; 40(3):502-11. DOI: 10.1002/1097-0134(20000815)40:3<502::aid-prot170>3.0.co;2-q. View