Efficient Gene Transfection Using Chitosan-alginate Core-shell Nanoparticles
Overview
Authors
Affiliations
Reverse microemulsion was used as a template to fabricate chitosan-alginate core-shell nanoparticles encapsulated with enhanced green fluorescent protein (EGFP)-encoded plasmids. The average size of DNA-entrapped nanoparticles measured by dynamic light scattering was increased proportionally, with the N/P ratios ranging from 5 to 20. These alginate-coated chitosan nanoparticles endocytosed by NIH 3T3 cells trigged swelling of transport vesicles which render gene escape before entering digestive endolysosomal compartment and concomitantly promote gene transfection rate. Results showed that DNA-encapsulated chitosan-alginate nanoparticles with average size of 64nm (N/P ratio of 5) could achieve the level of gene expression comparable with the one obtained by using polyethyleneimine-DNA complexes.
Chitosan: A Versatile Biomaterial Revolutionizing Endodontic Therapy.
Thakare A, Sedani S, Kriplani S, Patel A, Umre U Cureus. 2024; 16(6):e62506.
PMID: 39022517 PMC: 11253581. DOI: 10.7759/cureus.62506.
Nanoenhancer for improving naked DNA electrotransfection .
Wang Y, Wang C, Sylvers J, Segura T, Yuan F Front Bioeng Biotechnol. 2023; 11:1181795.
PMID: 37229498 PMC: 10203387. DOI: 10.3389/fbioe.2023.1181795.
Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences.
Hu T, Lo A Polymers (Basel). 2021; 13(11).
PMID: 34199641 PMC: 8199729. DOI: 10.3390/polym13111852.
Sundar S, Kundu J, Kundu S Sci Technol Adv Mater. 2016; 11(1):014104.
PMID: 27877319 PMC: 5090546. DOI: 10.1088/1468-6996/11/1/014104.
Chitkara D, Mittal A, Mahato R, Kumar N Drug Deliv Transl Res. 2015; 4(5-6):439-51.
PMID: 25787206 DOI: 10.1007/s13346-014-0206-y.