» Articles » PMID: 17692280

Selectivity in ISG15 and Ubiquitin Recognition by the SARS Coronavirus Papain-like Protease

Overview
Publisher Elsevier
Specialties Biochemistry
Biophysics
Date 2007 Aug 19
PMID 17692280
Citations 99
Authors
Affiliations
Soon will be listed here.
Abstract

The severe acute respiratory syndrome coronavirus papain-like protease (SARS-CoV PLpro) carries out N-terminal processing of the viral replicase polyprotein, and also exhibits Lys48-linked polyubiquitin chain debranching and ISG15 precursor processing activities in vitro. Here, we used SDS-PAGE and fluorescence-based assays to demonstrate that ISG15 derivatives are the preferred substrates for the deubiquitinating activity of the PLpro. With k(cat)/K(M) of 602,000 M(-1)s(-1), PLpro hydrolyzes ISG15-AMC 30- and 60-fold more efficiently than Ub-AMC and Nedd8-AMC, respectively. Data obtained with truncated ISG15 and hybrid Ub/ISG15 substrates indicate that both the N- and C-terminal Ub-like domains of ISG15 contribute to this preference. The enzyme also displays a preference for debranching Lys48- over Lys63-linked polyubiquitin chains. Our results demonstrate that SARS-CoV PLpro can differentiate between ubiquitin-like modifiers sharing a common C-terminal sequence, and that the debranching activity of the PLpro is linkage type selective. The potential structural basis for the demonstrated specificity of SARS-CoV PLpro is discussed.

Citing Articles

ISG15 Drives Immune Pathology and Respiratory Failure during Systemic Lymphocytic Choriomeningitis Virus Infection.

Shaabani N, Zak J, Johnson J, Huang Z, Nguyen N, Lazar D J Immunol. 2024; 213(12):1811-1824.

PMID: 39495004 PMC: 11784630. DOI: 10.4049/jimmunol.2400042.


An ISG15-Based High-Throughput Screening Assay for Identification and Characterization of SARS-CoV-2 Inhibitors Targeting Papain-like Protease.

Samrat S, Kumar P, Liu Y, Chen K, Lee H, Li Z Viruses. 2024; 16(8).

PMID: 39205213 PMC: 11359932. DOI: 10.3390/v16081239.


Mutational profiling of SARS-CoV-2 papain-like protease reveals requirements for function, structure, and drug escape.

Wu X, Go M, Nguyen J, Kuchel N, Lu B, Zeglinski K Nat Commun. 2024; 15(1):6219.

PMID: 39043718 PMC: 11266423. DOI: 10.1038/s41467-024-50566-9.


Exploring Cannabinoids as Potential Inhibitors of SARS-CoV-2 Papain-like Protease: Insights from Computational Analysis and Molecular Dynamics Simulations.

Holmes J, Islam S, Milligan K Viruses. 2024; 16(6).

PMID: 38932170 PMC: 11209085. DOI: 10.3390/v16060878.


Cellular targets and lysine selectivity of the HERC5 ISG15 ligase.

Zhao X, Perez J, Faull P, Chan C, Munting F, Canadeo L iScience. 2024; 27(2):108820.

PMID: 38303729 PMC: 10831901. DOI: 10.1016/j.isci.2024.108820.


References
1.
Renatus M, Parrado S, DArcy A, Eidhoff U, Gerhartz B, Hassiepen U . Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure. 2006; 14(8):1293-302. PMC: 7126176. DOI: 10.1016/j.str.2006.06.012. View

2.
Wilkinson K, Gan-Erdene T, Kolli N . Derivitization of the C-terminus of ubiquitin and ubiquitin-like proteins using intein chemistry: methods and uses. Methods Enzymol. 2005; 399:37-51. DOI: 10.1016/S0076-6879(05)99003-4. View

3.
Ratia K, Saikatendu K, Santarsiero B, Barretto N, Baker S, Stevens R . Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A. 2006; 103(15):5717-22. PMC: 1458639. DOI: 10.1073/pnas.0510851103. View

4.
Kerscher O, Felberbaum R, Hochstrasser M . Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 2006; 22:159-80. DOI: 10.1146/annurev.cellbio.22.010605.093503. View

5.
Hadari T, WARMS J, Rose I, Hershko A . A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains. Role in protein degradation. J Biol Chem. 1992; 267(2):719-27. View