» Articles » PMID: 17672523

Tuning the PK(a) of Fluorescein to Optimize Binding Assays

Overview
Journal Anal Chem
Specialty Chemistry
Date 2007 Aug 4
PMID 17672523
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

The phenolic pKa of fluorescein varies depending on its environment. The fluorescence of the dye varies likewise. Accordingly, a change in fluorescence can report on the association of a fluorescein conjugate to another molecule. Here, we demonstrate how to optimize this process with chemical synthesis. The fluorescence of fluorescein-labeled model protein, bovine pancreatic ribonuclease (RNase A), decreases upon binding to its cognate inhibitor protein (RI). Free and RI-bound fluorescein-RNase A have pKa values of 6.35 and 6.70, respectively, leaving the fluorescein moiety largely unprotonated at physiological pH and thus limiting the sensitivity of the assay. To increase the fluorescein pKa and, hence, the assay sensitivity, we installed an electron-donating alkyl group ortho to each phenol group. 2',7'-Diethylfluorescein (DEF) has spectral properties similar to those of fluorescein but a higher phenolic pKa. Most importantly, free and RI-bound DEF-RNase A have pKa values of 6.68 and 7.29, respectively, resulting in a substantial increase in the sensitivity of the assay. Using DEF-RNase A rather than fluorescein-RNase A in a microplate assay at pH 7.12 increased the Z'-factor from -0.17 to 0.69. We propose that synthetic "tuning" of the pKa of fluorescein and other pH-sensitive fluorophores provides a general means to optimize binding assays.

Citing Articles

siRNA-Mimetic Ratiometric pH (sMiRpH) Probes for Improving Cell Delivery and mRNA Knockdown.

Herling M, Lopez Vazquez L, Dmochowski I ACS Chem Biol. 2025; 20(2):309-320.

PMID: 39909405 PMC: 11854375. DOI: 10.1021/acschembio.4c00545.


Visible Light Spectroscopy of Liquid Solutes from Femto- to Attoliter Volumes Inside a Single Nanofluidic Channel.

Altenburger B, Fritzsche J, Langhammer C ACS Nano. 2025; 19(2):2857-2869.

PMID: 39763411 PMC: 11760169. DOI: 10.1021/acsnano.4c15878.


Evaluation of the Cytosolic Uptake of HaloTag Using a pH-Sensitive Dye.

Giancola J, Grimm J, Jun J, Petri Y, Lavis L, Raines R ACS Chem Biol. 2024; 19(4):908-915.

PMID: 38525961 PMC: 11186736. DOI: 10.1021/acschembio.3c00713.


Ratiometric, pH-Sensitive Probe for Monitoring siRNA Delivery.

Herling M, Dmochowski I J Am Chem Soc. 2023; 145(17):9417-9422.

PMID: 37075200 PMC: 10821410. DOI: 10.1021/jacs.3c01032.


Antibody mix-and-read assays based on fluorescence intensity probes.

Patil U, Goyal A, Vu B, Liu Y, Maranholkar V, Kourentzi K MAbs. 2021; 13(1):1980178.

PMID: 34662534 PMC: 8525972. DOI: 10.1080/19420862.2021.1980178.


References
1.
Owicki J . Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen. 2000; 5(5):297-306. DOI: 10.1177/108705710000500501. View

2.
Coons A, Kaplan M . Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med. 1950; 91(1):1-13. PMC: 2135948. DOI: 10.1084/jem.91.1.1. View

3.
Liu J, Diwu Z, Leung W . Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorg Med Chem Lett. 2001; 11(22):2903-5. DOI: 10.1016/s0960-894x(01)00595-9. View

4.
Raines R . Ribonuclease A. Chem Rev. 2002; 98(3):1045-1066. DOI: 10.1021/cr960427h. View

5.
Diehl H . Studies on fluorescein-VI Absorbance of the various prototropic forms of yellow fluorescein in aqueous solution. Talanta. 1989; 36(3):413-5. DOI: 10.1016/0039-9140(89)80212-7. View