Sustich S, Afrose F, Greathouse D, Koeppe 2nd R
Biochim Biophys Acta Biomembr. 2019; 1862(2):183134.
PMID: 31738898
PMC: 6943188.
DOI: 10.1016/j.bbamem.2019.183134.
McKay M, Fu R, Greathouse D, Koeppe 2nd R
J Phys Chem B. 2019; 123(38):8034-8047.
PMID: 31483653
PMC: 6765365.
DOI: 10.1021/acs.jpcb.9b06034.
Lipinski K, McKay M, Afrose F, Martfeld A, Koeppe 2nd R, Greathouse D
Chembiochem. 2019; 20(21):2784-2792.
PMID: 31150136
PMC: 6829048.
DOI: 10.1002/cbic.201900282.
Venable R, Kramer A, Pastor R
Chem Rev. 2019; 119(9):5954-5997.
PMID: 30747524
PMC: 6506413.
DOI: 10.1021/acs.chemrev.8b00486.
Thibado J, Martfeld A, Greathouse D, Koeppe 2nd R
Biochemistry. 2016; 55(45):6337-6343.
PMID: 27782382
PMC: 5266483.
DOI: 10.1021/acs.biochem.6b00896.
Ionization Properties of Histidine Residues in the Lipid Bilayer Membrane Environment.
Martfeld A, Greathouse D, Koeppe 2nd R
J Biol Chem. 2016; 291(36):19146-56.
PMID: 27440045
PMC: 5009283.
DOI: 10.1074/jbc.M116.738583.
Penetration of HIV-1 Tat47-57 into PC/PE Bilayers Assessed by MD Simulation and X-ray Scattering.
Neale C, Huang K, Garcia A, Tristram-Nagle S
Membranes (Basel). 2015; 5(3):473-94.
PMID: 26402709
PMC: 4584291.
DOI: 10.3390/membranes5030473.
HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations.
Akabori K, Huang K, Treece B, Jablin M, Maranville B, Woll A
Biochim Biophys Acta. 2014; 1838(12):3078-87.
PMID: 25148702
PMC: 4610132.
DOI: 10.1016/j.bbamem.2014.08.014.
The different interactions of lysine and arginine side chains with lipid membranes.
Li L, Vorobyov I, Allen T
J Phys Chem B. 2013; 117(40):11906-20.
PMID: 24007457
PMC: 6548679.
DOI: 10.1021/jp405418y.
Quantifying accumulation or exclusion of H, HO, and Hofmeister salt ions near interfaces.
Pegram L, Record Jr M
Chem Phys Lett. 2013; 467(1-3):1-8.
PMID: 23750042
PMC: 3673785.
DOI: 10.1016/j.cplett.2008.10.090.
Reconciling the roles of kinetic and thermodynamic factors in membrane-protein insertion.
Gumbart J, Teo I, Roux B, Schulten K
J Am Chem Soc. 2013; 135(6):2291-7.
PMID: 23298280
PMC: 3573731.
DOI: 10.1021/ja310777k.
Determination of membrane-insertion free energies by molecular dynamics simulations.
Gumbart J, Roux B
Biophys J. 2012; 102(4):795-801.
PMID: 22385850
PMC: 3283816.
DOI: 10.1016/j.bpj.2012.01.021.
Transfer of arginine into lipid bilayers is nonadditive.
MacCallum J, Bennett W, Tieleman D
Biophys J. 2011; 101(1):110-7.
PMID: 21723820
PMC: 3127173.
DOI: 10.1016/j.bpj.2011.05.038.
Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers.
Moon C, Fleming K
Proc Natl Acad Sci U S A. 2011; 108(25):10174-7.
PMID: 21606332
PMC: 3121867.
DOI: 10.1073/pnas.1103979108.
Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments.
Schow E, Freites J, Myint P, Bernsel A, von Heijne G, White S
J Membr Biol. 2010; 239(1-2):35-48.
PMID: 21127848
PMC: 3030942.
DOI: 10.1007/s00232-010-9330-x.
Changes in transmembrane helix alignment by arginine residues revealed by solid-state NMR experiments and coarse-grained MD simulations.
Vostrikov V, Hall B, Greathouse D, Koeppe 2nd R, Sansom M
J Am Chem Soc. 2010; 132(16):5803-11.
PMID: 20373735
PMC: 2888137.
DOI: 10.1021/ja100598e.
Effects of PKA phosphorylation on the conformation of the Na,K-ATPase regulatory protein FXYD1.
Teriete P, Thai K, Choi J, Marassi F
Biochim Biophys Acta. 2009; 1788(11):2462-70.
PMID: 19761758
PMC: 2778042.
DOI: 10.1016/j.bbamem.2009.09.001.
Penetration depth of surfactant peptide KL4 into membranes is determined by fatty acid saturation.
Antharam V, Elliott D, Mills F, Farver R, Sternin E, Long J
Biophys J. 2009; 96(10):4085-98.
PMID: 19450480
PMC: 2712189.
DOI: 10.1016/j.bpj.2008.12.3966.
Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field.
Nishizawa M, Nishizawa K
Biophys J. 2008; 95(4):1729-44.
PMID: 18487312
PMC: 2483744.
DOI: 10.1529/biophysj.108.130658.