» Articles » PMID: 15674282

Recognition of Transmembrane Helices by the Endoplasmic Reticulum Translocon

Overview
Journal Nature
Specialty Science
Date 2005 Jan 28
PMID 15674282
Citations 463
Authors
Affiliations
Soon will be listed here.
Abstract

Membrane proteins depend on complex translocation machineries for insertion into target membranes. Although it has long been known that an abundance of nonpolar residues in transmembrane helices is the principal criterion for membrane insertion, the specific sequence-coding for transmembrane helices has not been identified. By challenging the endoplasmic reticulum Sec61 translocon with an extensive set of designed polypeptide segments, we have determined the basic features of this code, including a 'biological' hydrophobicity scale. We find that membrane insertion depends strongly on the position of polar residues within transmembrane segments, adding a new dimension to the problem of predicting transmembrane helices from amino acid sequences. Our results indicate that direct protein-lipid interactions are critical during translocon-mediated membrane insertion.

Citing Articles

Sequence-dependent scale for translocon-mediated insertion of interfacial helices in membranes.

Grau B, Kormos R, Bano-Polo M, Chen K, Garcia-Murria M, Hajredini F Sci Adv. 2025; 11(8):eads6804.

PMID: 39970206 PMC: 11837994. DOI: 10.1126/sciadv.ads6804.


Vastly different energy landscapes of the membrane insertions of monomeric gasdermin D and A3.

Korn V, Pluhackova K Commun Chem. 2025; 8(1):38.

PMID: 39915622 PMC: 11802827. DOI: 10.1038/s42004-024-01400-2.


FoldX force field revisited, an improved version.

Delgado J, Reche R, Cianferoni D, Orlando G, van der Kant R, Rousseau F Bioinformatics. 2025; 41(2).

PMID: 39913370 PMC: 11879241. DOI: 10.1093/bioinformatics/btaf064.


Strategies for Making High-Performance Artificial Spider Silk Fibers.

Schmuck B, Greco G, Pessatti T, Sonavane S, Langwallner V, Arndt T Adv Funct Mater. 2024; 34(35):2305040.

PMID: 39355086 PMC: 11440630. DOI: 10.1002/adfm.202305040.


Protein Classes Predicted by Molecular Surface Chemical Features: Machine Learning-Assisted Classification of Cytosol and Secreted Proteins.

Hu G, Moon J, Hayashi T J Phys Chem B. 2024; 128(35):8423-8436.

PMID: 39185763 PMC: 11382266. DOI: 10.1021/acs.jpcb.4c02461.