» Articles » PMID: 17592477

In Vivo Post-transcriptional Gene Silencing of Alpha-1 Antitrypsin by Adeno-associated Virus Vectors Expressing SiRNA

Overview
Journal Lab Invest
Specialty Pathology
Date 2007 Jun 27
PMID 17592477
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

alpha-1 Antitrypsin (AAT) deficiency is one of the most common genetic diseases in North America, with a carrier frequency of approximately 4% in the US population. Homozygosity for the most common mutation (Glu342Lys, PI(*)Z) leads to the synthesis of a mutant protein, which accumulates and polymerizes within hepatocytes rather than being efficiently secreted. This lack of secretion causes severe serum deficiency predisposing to chronic lung disease. Twelve to fifteen percent of patients with PI(*)ZZ also develop liver disease, which can be severe, even in infancy. This is thought to be due to toxic effects of the accumulated mutant Z-AAT within the hepatocyte. Thus, an approach to reduce AAT-deficient liver disease will likely require some mechanism to decrease the amount of Z-AAT within hepatocytes. In this report, we describe studies of small-interfering RNAs (siRNAs) designed to downregulate endogenous AAT within hepatocytes. Three different siRNA sequences were identified and cloned into a recombinant adeno-associated virus (rAAV) backbone, either singly or as a trifunctional (3X) construct. Each had activity independently, but the levels of AAT expression in cell culture models showed the greatest decrease with the 3X construct, resulting in levels that were five-fold lower than controls. The rAAV-3X-siRNA was then packaged into AAV8 capsids and used in vivo to transduce the livers of human Z-AAT overexpressing transgenic mice. Those studies showed a decrease in total human AAT, a clearing of Z-AAT accumulation by immunohistochemistry, and a decrease in monomer Z-AAT within the liver within 3 weeks after vector injection. The rAAV8-3X-siRNA vector may hold promise as a potential therapy for patients with AAT liver disease.

Citing Articles

Oligonucleotide-Based Therapies for Chronic HBV Infection: A Primer on Biochemistry, Mechanisms and Antiviral Effects.

Vaillant A Viruses. 2022; 14(9).

PMID: 36146858 PMC: 9502277. DOI: 10.3390/v14092052.


Evaluation of cytosine base editing and adenine base editing as a potential treatment for alpha-1 antitrypsin deficiency.

Packer M, Chowdhary V, Lung G, Cheng L, Aratyn-Schaus Y, Leboeuf D Mol Ther. 2022; 30(4):1396-1406.

PMID: 35121111 PMC: 9077367. DOI: 10.1016/j.ymthe.2022.01.040.


Alpha-1 antitrypsin deficiency liver disease.

Patel D, McAllister S, Teckman J Transl Gastroenterol Hepatol. 2021; 6:23.

PMID: 33824927 PMC: 7829072. DOI: 10.21037/tgh.2020.02.23.


Update on Alpha-1 Antitrypsin Deficiency in Liver Disease.

Narayanan P, Mistry P Clin Liver Dis (Hoboken). 2020; 15(6):228-235.

PMID: 32617155 PMC: 7326637. DOI: 10.1002/cld.896.


pH-Responsive Cross-Linked Low Molecular Weight Polyethylenimine as an Efficient Gene Vector for Delivery of Plasmid DNA Encoding Anti-VEGF-shRNA for Tumor Treatment.

Li X, Guo X, Cheng Y, Zhao X, Fang Z, Luo Y Front Oncol. 2018; 8:354.

PMID: 30319959 PMC: 6167493. DOI: 10.3389/fonc.2018.00354.