» Articles » PMID: 17311470

Revisiting the Basic Reproductive Number for Malaria and Its Implications for Malaria Control

Overview
Journal PLoS Biol
Specialty Biology
Date 2007 Feb 22
PMID 17311470
Citations 246
Authors
Affiliations
Soon will be listed here.
Abstract

The prospects for the success of malaria control depend, in part, on the basic reproductive number for malaria, R0. Here, we estimate R0 in a novel way for 121 African populations, and thereby increase the number of R0 estimates for malaria by an order of magnitude. The estimates range from around one to more than 3,000. We also consider malaria transmission and control in finite human populations, of size H. We show that classic formulas approximate the expected number of mosquitoes that could trace infection back to one mosquito after one parasite generation, Z0(H), but they overestimate the expected number of infected humans per infected human, R0(H). Heterogeneous biting increases R0 and, as we show, Z0(H), but we also show that it sometimes reduces R0(H); those who are bitten most both infect many vectors and absorb infectious bites. The large range of R0 estimates strongly supports the long-held notion that malaria control presents variable challenges across its transmission spectrum. In populations where R0 is highest, malaria control will require multiple, integrated methods that target those who are bitten most. Therefore, strategic planning for malaria control should consider R0, the spatial scale of transmission, human population density, and heterogeneous biting.

Citing Articles

Structure of endogenous Pfs230:Pfs48/45 in complex with potent malaria transmission-blocking antibodies.

Bekkering E, Yoo R, Hailemariam S, Heide F, Ivanochko D, Jackman M bioRxiv. 2025; .

PMID: 39990443 PMC: 11844449. DOI: 10.1101/2025.02.14.638310.


Climate Change and Malaria: A Call for Robust Analytics.

Laydon D, Smith D, Chakradeo K, Khurana M, Okiring J, Duchene D medRxiv. 2025; .

PMID: 39830277 PMC: 11741450. DOI: 10.1101/2024.09.16.24313623.


The role of connectivity on malaria dynamics across areas with contrasting control coverage in the Peruvian Amazon.

Carrasco-Escobar G, Villa D, Barja A, Lowe R, Llanos-Cuentas A, Benmarhnia T PLoS Negl Trop Dis. 2024; 18(11):e0012560.

PMID: 39495715 PMC: 11534198. DOI: 10.1371/journal.pntd.0012560.


Plasmodium falciparum infection in humans and mosquitoes influence natural Anopheline biting behavior and transmission.

Markwalter C, Lapp Z, Abel L, Kimachas E, Omollo E, Freedman E Nat Commun. 2024; 15(1):4626.

PMID: 38816383 PMC: 11139876. DOI: 10.1038/s41467-024-49080-9.


An analytically tractable, age-structured model of the impact of vector control on mosquito-transmitted infections.

Davis E, Hollingsworth T, Keeling M PLoS Comput Biol. 2024; 20(3):e1011440.

PMID: 38484022 PMC: 10965057. DOI: 10.1371/journal.pcbi.1011440.


References
1.
Smith D, Dushoff J, Snow R, Hay S . The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature. 2005; 438(7067):492-5. PMC: 3128496. DOI: 10.1038/nature04024. View

2.
Garrett-Jones C . PROGNOSIS FOR INTERRUPTION OF MALARIA TRANSMISSION THROUGH ASSESSMENT OF THE MOSQUITO'S VECTORIAL CAPACITY. Nature. 1964; 204:1173-5. DOI: 10.1038/2041173a0. View

3.
Woolhouse M, Dye C, Etard J, Smith T, Charlwood J, Garnett G . Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci U S A. 1997; 94(1):338-42. PMC: 19338. DOI: 10.1073/pnas.94.1.338. View

4.
Gupta S, Trenholme K, Anderson R, Day K . Antigenic diversity and the transmission dynamics of Plasmodium falciparum. Science. 1994; 263(5149):961-3. DOI: 10.1126/science.8310293. View

5.
Killeen G, McKenzie F, Foy B, Schieffelin C, Billingsley P, Beier J . A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg. 2001; 62(5):535-44. PMC: 2483339. DOI: 10.4269/ajtmh.2000.62.535. View