» Articles » PMID: 17303532

Brain Oedema in Focal Ischaemia: Molecular Pathophysiology and Theoretical Implications

Overview
Journal Lancet Neurol
Specialty Neurology
Date 2007 Feb 17
PMID 17303532
Citations 356
Authors
Affiliations
Soon will be listed here.
Abstract

Focal cerebral ischaemia and post-ischaemic reperfusion cause cerebral capillary dysfunction, resulting in oedema formation and haemorrhagic conversion. There are substantial gaps in understanding the pathophysiology, especially regarding early molecular participants. Here, we review physiological and molecular mechanisms involved. We reaffirm the central role of Starling's principle, which states that oedema formation is determined by the driving force and the capillary "permeability pore". We emphasise that the movement of fluids is largely driven without new expenditure of energy by the ischaemic brain. We organise the progressive changes in osmotic and hydrostatic conductivity of abnormal capillaries into three phases: formation of ionic oedema, formation of vasogenic oedema, and catastrophic failure with haemorrhagic conversion. We suggest a new theory suggesting that ischaemia-induced capillary dysfunction can be attributed to de novo synthesis of a specific ensemble of proteins that determine osmotic and hydraulic conductivity in Starling's equation, and whose expression is driven by a distinct transcriptional program.

Citing Articles

Early venous filling is associated with unfavorable outcomes in acute ischemic stroke with large vessel occlusion after mechanical thrombectomy: a real-world analysis.

Han J, Wu Y, Wang Z, Han J, Luo G, Huo K BMC Neurol. 2025; 25(1):92.

PMID: 40050750 PMC: 11883998. DOI: 10.1186/s12883-025-04111-w.


Deep learning-based classification of diffusion-weighted imaging-fluid-attenuated inversion recovery mismatch.

Kim P, Kim D, Lee J, Kim H, Seo J, Lee S Sci Rep. 2025; 15(1):5924.

PMID: 39966647 PMC: 11836310. DOI: 10.1038/s41598-025-90214-w.


Antisecretory factor in severe traumatic brain injury (AFISTBI): protocol for an exploratory randomized placebo-controlled trial.

Reen L, Cederberg D, Marklund N, Visse E, Siesjo P Trials. 2025; 26(1):43.

PMID: 39920739 PMC: 11804074. DOI: 10.1186/s13063-025-08760-7.


Role of astrocytes connexins - pannexins in acute brain injury.

Tichauer J, Rovegno M Neurotherapeutics. 2025; 22(1):e00523.

PMID: 39848901 PMC: 11840357. DOI: 10.1016/j.neurot.2025.e00523.


A multifactorial, evidence-based analysis of pathophysiology in Spaceflight Associated Neuro-Ocular Syndrome (SANS).

Galdamez L, Mader T, Ong J, Kadipasaoglu C, Lee A Eye (Lond). 2025; 39(4):700-709.

PMID: 39827235 PMC: 11885454. DOI: 10.1038/s41433-025-03618-3.


References
1.
Kogure K, Kato H . Altered gene expression in cerebral ischemia. Stroke. 1993; 24(12):2121-7. DOI: 10.1161/01.str.24.12.2121. View

2.
Salnikow K, Kluz T, Costa M, Piquemal D, Demidenko Z, Xie K . The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol Cell Biol. 2002; 22(6):1734-41. PMC: 135615. DOI: 10.1128/MCB.22.6.1734-1741.2002. View

3.
Hasegawa K, Wakino S, Tanaka T, Kimoto M, Tatematsu S, Kanda T . Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Sp1 transcription factor in endothelial cells. Arterioscler Thromb Vasc Biol. 2006; 26(7):1488-94. DOI: 10.1161/01.ATV.0000219615.88323.b4. View

4.
Badaut J, Lasbennes F, Magistretti P, Regli L . Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002; 22(4):367-78. DOI: 10.1097/00004647-200204000-00001. View

5.
Wang Y, Hu W, Ng T, Furlan A, Majors A, Jones S . Brain tissue sodium is a ticking clock telling time after arterial occlusion in rat focal cerebral ischemia. Stroke. 2000; 31(6):1386-91; discussion 1392. DOI: 10.1161/01.str.31.6.1386. View