Bhatt J, Morris K, Haware R
AAPS PharmSciTech. 2024; 25(8):255.
PMID: 39443361
DOI: 10.1208/s12249-024-02970-z.
Sodeifian G, Hsieh C, Masihpour F, Tabibzadeh A, Jiang R, Cheng Y
Sci Rep. 2024; 14(1):22370.
PMID: 39333248
PMC: 11437171.
DOI: 10.1038/s41598-024-73543-0.
Kaneko H, Kono S, Nojima A, Kambayashi T
Anal Sci Adv. 2024; 2(9-10):470-479.
PMID: 38716444
PMC: 10989590.
DOI: 10.1002/ansa.202000177.
Kaneko H
Anal Sci Adv. 2024; 3(9-10):278-287.
PMID: 38716264
PMC: 10989554.
DOI: 10.1002/ansa.202200018.
Kaneko H
Anal Sci Adv. 2024; 2(5-6):326-333.
PMID: 38716160
PMC: 10989668.
DOI: 10.1002/ansa.202000122.
Defect rate prediction and failure-cause diagnosis in a mass-production process for precision electric components.
Kaneko H
Anal Sci Adv. 2024; 4(9-10):312-318.
PMID: 38715597
PMC: 10989645.
DOI: 10.1002/ansa.202300019.
Deconvoluting low yield from weak potency in direct-to-biology workflows with machine learning.
McCorkindale W, Filep M, London N, Lee A, King-Smith E
RSC Med Chem. 2024; 15(3):1015-1021.
PMID: 38516605
PMC: 10953487.
DOI: 10.1039/d3md00719g.
Random Forest models to estimate bankfull and low flow channel widths and depths across the conterminous United States.
Doyle J, Hill R, Leibowitz S, Ebersole J
J Am Water Resour Assoc. 2023; 59(5):1099-1114.
PMID: 37941964
PMC: 10631553.
DOI: 10.1111/1752-1688.13116.
Mechanistically transparent models for predicting aqueous solubility of rigid, slightly flexible, and very flexible drugs (MW<2000) Accuracy near that of random forest regression.
Avdeef A
ADMET DMPK. 2023; 11(3):317-330.
PMID: 37829322
PMC: 10567068.
DOI: 10.5599/admet.1879.
Force field-inspired transformer network assisted crystal density prediction for energetic materials.
Jin J, Ren G, Hu J, Liu Y, Gao Y, Wu K
J Cheminform. 2023; 15(1):65.
PMID: 37468954
PMC: 10355066.
DOI: 10.1186/s13321-023-00736-6.
Supramolecular Organization in Salts of Riluzole with Dihydroxybenzoic Acids-The Key Role of the Mutual Arrangement of OH Groups.
Voronin A, Surov A, Churakov A, Vener M
Pharmaceutics. 2023; 15(3).
PMID: 36986739
PMC: 10051219.
DOI: 10.3390/pharmaceutics15030878.
Blinded Predictions and Post Hoc Analysis of the Second Solubility Challenge Data: Exploring Training Data and Feature Set Selection for Machine and Deep Learning Models.
Conn J, Carter J, Conn J, Subramanian V, Baxter A, Engkvist O
J Chem Inf Model. 2023; 63(4):1099-1113.
PMID: 36758178
PMC: 9976279.
DOI: 10.1021/acs.jcim.2c01189.
Prediction of the Aqueous Solubility of Compounds Based on Light Gradient Boosting Machines with Molecular Fingerprints and the Cuckoo Search Algorithm.
Li M, Chen H, Zhang H, Zeng M, Chen B, Guan L
ACS Omega. 2022; 7(46):42027-42035.
PMID: 36440111
PMC: 9685740.
DOI: 10.1021/acsomega.2c03885.
Multi-channel GCN ensembled machine learning model for molecular aqueous solubility prediction on a clean dataset.
Deng C, Liang L, Xing G, Hua Y, Lu T, Zhang Y
Mol Divers. 2022; 27(3):1023-1035.
PMID: 35739374
DOI: 10.1007/s11030-022-10465-x.
Machine learning for flow batteries: opportunities and challenges.
Li T, Zhang C, Li X
Chem Sci. 2022; 13(17):4740-4752.
PMID: 35655893
PMC: 9067567.
DOI: 10.1039/d2sc00291d.
Genetic Algorithm-Based Partial Least-Squares with Only the First Component for Model Interpretation.
Kaneko H
ACS Omega. 2022; 7(10):8968-8979.
PMID: 35309472
PMC: 8928558.
DOI: 10.1021/acsomega.1c07379.
Can small drugs predict the intrinsic aqueous solubility of 'beyond Rule of 5' big drugs?.
Avdeef A, Kansy M
ADMET DMPK. 2022; 8(3):180-206.
PMID: 35300304
PMC: 8915605.
DOI: 10.5599/admet.794.
Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database.
Avdeef A
ADMET DMPK. 2022; 8(1):29-77.
PMID: 35299775
PMC: 8915599.
DOI: 10.5599/admet.766.
Boosting the predictive performance with aqueous solubility dataset curation.
Meng J, Chen P, Wahib M, Yang M, Zheng L, Wei Y
Sci Data. 2022; 9(1):71.
PMID: 35241693
PMC: 8894363.
DOI: 10.1038/s41597-022-01154-3.
Design of Experimental Conditions with Machine Learning for Collaborative Organic Synthesis Reactions Using Transition-Metal Catalysts.
Ebi T, Sen A, Dhital R, Yamada Y, Kaneko H
ACS Omega. 2021; 6(41):27578-27586.
PMID: 34693179
PMC: 8529890.
DOI: 10.1021/acsomega.1c04826.