» Articles » PMID: 17124532

Ca2+/calmodulin-dependent Protein Kinase II Regulates Cardiac Na+ Channels

Overview
Journal J Clin Invest
Specialty General Medicine
Date 2006 Nov 25
PMID 17124532
Citations 275
Authors
Affiliations
Soon will be listed here.
Abstract

In heart failure (HF), Ca(2+)/calmodulin kinase II (CaMKII) expression is increased. Altered Na(+) channel gating is linked to and may promote ventricular tachyarrhythmias (VTs) in HF. Calmodulin regulates Na(+) channel gating, in part perhaps via CaMKII. We investigated effects of adenovirus-mediated (acute) and Tg (chronic) overexpression of cytosolic CaMKIIdelta(C) on Na(+) current (I(Na)) in rabbit and mouse ventricular myocytes, respectively (in whole-cell patch clamp). Both acute and chronic CaMKIIdelta(C) overexpression shifted voltage dependence of Na(+) channel availability by -6 mV (P < 0.05), and the shift was Ca(2+) dependent. CaMKII also enhanced intermediate inactivation and slowed recovery from inactivation (prevented by CaMKII inhibitors autocamtide 2-related inhibitory peptide [AIP] or KN93). CaMKIIdelta(C) markedly increased persistent (late) inward I(Na) and intracellular Na(+) concentration (as measured by the Na(+) indicator sodium-binding benzofuran isophthalate [SBFI]), which was prevented by CaMKII inhibition in the case of acute CaMKIIdelta(C) overexpression. CaMKII coimmunoprecipitates with and phosphorylates Na(+) channels. In vivo, transgenic CaMKIIdelta(C) overexpression prolonged QRS duration and repolarization (QT intervals), decreased effective refractory periods, and increased the propensity to develop VT. We conclude that CaMKII associates with and phosphorylates cardiac Na(+) channels. This alters I(Na) gating to reduce availability at high heart rate, while enhancing late I(Na) (which could prolong action potential duration). In mice, enhanced CaMKIIdelta(C) activity predisposed to VT. Thus, CaMKII-dependent regulation of Na(+) channel function may contribute to arrhythmogenesis in HF.

Citing Articles

Effects of Eleclazine (GS6615) on the proarrhythmic electrophysiological changes induced by myocardial stretch.

Chorro F, Such-Miquel L, Cunat S, Arias-Mutis O, Genoves P, Zarzoso M Front Physiol. 2025; 16:1525836.

PMID: 39958692 PMC: 11825515. DOI: 10.3389/fphys.2025.1525836.


Modeling autoregulation of cardiac excitation-Ca-contraction and arrhythmogenic activities in response to mechanical load changes.

Hatano A, Izu L, Chen-Izu Y, Sato D iScience. 2025; 28(2):111788.

PMID: 39935456 PMC: 11810713. DOI: 10.1016/j.isci.2025.111788.


Mechano-energetic uncoupling in hypertrophic cardiomyopathy: Pathophysiological mechanisms and therapeutic opportunities.

Sequeira V, Waddingham M, Tsuchimochi H, Maack C, Pearson J J Mol Cell Cardiol Plus. 2025; 4():100036.

PMID: 39801694 PMC: 11708264. DOI: 10.1016/j.jmccpl.2023.100036.


Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome.

Mondejar-Parreno G, Moreno-Manuel A, Ruiz-Robles J, Jalife J Cell Discov. 2025; 11(1):3.

PMID: 39788950 PMC: 11717978. DOI: 10.1038/s41421-024-00738-0.


Mechanistic Relevance of Ventricular Arrhythmias in Heart Failure with Preserved Ejection Fraction.

Bahrami P, Aromolaran K, Aromolaran A Int J Mol Sci. 2025; 25(24.

PMID: 39769189 PMC: 11677834. DOI: 10.3390/ijms252413423.


References
1.
Kirchhefer U, Schmitz W, Scholz H, Neumann J . Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res. 1999; 42(1):254-61. DOI: 10.1016/s0008-6363(98)00296-x. View

2.
Bezzina C, Veldkamp M, van den Berg M, Postma A, Rook M, Viersma J . A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res. 1999; 85(12):1206-13. DOI: 10.1161/01.res.85.12.1206. View

3.
Wang D, Yazawa K, George Jr A, Bennett P . Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci U S A. 1996; 93(23):13200-5. PMC: 24070. DOI: 10.1073/pnas.93.23.13200. View

4.
Zhang R, Khoo M, Wu Y, Yang Y, Grueter C, Ni G . Calmodulin kinase II inhibition protects against structural heart disease. Nat Med. 2005; 11(4):409-17. DOI: 10.1038/nm1215. View

5.
Khoo M, Kannankeril P, Li J, Zhang R, Kupershmidt S, Zhang W . Calmodulin kinase II activity is required for normal atrioventricular nodal conduction. Heart Rhythm. 2005; 2(6):634-40. DOI: 10.1016/j.hrthm.2005.03.019. View