» Articles » PMID: 17123434

Systematic Assignment of Thermodynamic Constraints in Metabolic Network Models

Overview
Publisher Biomed Central
Specialty Biology
Date 2006 Nov 25
PMID 17123434
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The availability of genome sequences for many organisms enabled the reconstruction of several genome-scale metabolic network models. Currently, significant efforts are put into the automated reconstruction of such models. For this, several computational tools have been developed that particularly assist in identifying and compiling the organism-specific lists of metabolic reactions. In contrast, the last step of the model reconstruction process, which is the definition of the thermodynamic constraints in terms of reaction directionalities, still needs to be done manually. No computational method exists that allows for an automated and systematic assignment of reaction directions in genome-scale models.

Results: We present an algorithm that - based on thermodynamics, network topology and heuristic rules - automatically assigns reaction directions in metabolic models such that the reaction network is thermodynamically feasible with respect to the production of energy equivalents. It first exploits all available experimentally derived Gibbs energies of formation to identify irreversible reactions. As these thermodynamic data are not available for all metabolites, in a next step, further reaction directions are assigned on the basis of network topology considerations and thermodynamics-based heuristic rules. Briefly, the algorithm identifies reaction subsets from the metabolic network that are able to convert low-energy co-substrates into their high-energy counterparts and thus net produce energy. Our algorithm aims at disabling such thermodynamically infeasible cyclic operation of reaction subnetworks by assigning reaction directions based on a set of thermodynamics-derived heuristic rules. We demonstrate our algorithm on a genome-scale metabolic model of E. coli. The introduced systematic direction assignment yielded 130 irreversible reactions (out of 920 total reactions), which corresponds to about 70% of all irreversible reactions that are required to disable thermodynamically infeasible energy production.

Conclusion: Although not being fully comprehensive, our algorithm for systematic reaction direction assignment could define a significant number of irreversible reactions automatically with low computational effort. We envision that the presented algorithm is a valuable part of a computational framework that assists the automated reconstruction of genome-scale metabolic models.

Citing Articles

Biothermodynamics of Viruses from Absolute Zero (1950) to Virothermodynamics (2022).

Popovic M Vaccines (Basel). 2022; 10(12).

PMID: 36560522 PMC: 9784531. DOI: 10.3390/vaccines10122112.


Reconstruction of the Genome-Scale Metabolic Model of and Its Application in the Overproduction of Erythromycin.

Xu F, Lu J, Ke X, Shao M, Huang M, Chu J Metabolites. 2022; 12(6).

PMID: 35736442 PMC: 9228414. DOI: 10.3390/metabo12060509.


Quantum Mechanical Methods Predict Accurate Thermodynamics of Biochemical Reactions.

Joshi R, McNaughton A, Thomas D, Henry C, Canon S, McCue L ACS Omega. 2021; 6(14):9948-9959.

PMID: 33869975 PMC: 8047721. DOI: 10.1021/acsomega.1c00997.


New thermodynamic activity-based approach allows predicting the feasibility of glycolysis.

Greinert T, Vogel K, Maskow T, Held C Sci Rep. 2021; 11(1):6125.

PMID: 33731762 PMC: 7971085. DOI: 10.1038/s41598-021-85594-8.


Thermodynamic Limits and Optimality of Microbial Growth.

Saadat N, Nies T, Rousset Y, Ebenhoh O Entropy (Basel). 2020; 22(3).

PMID: 33286054 PMC: 7516730. DOI: 10.3390/e22030277.


References
1.
Covert M, Schilling C, Famili I, Edwards J, Goryanin I, Selkov E . Metabolic modeling of microbial strains in silico. Trends Biochem Sci. 2001; 26(3):179-86. DOI: 10.1016/s0968-0004(00)01754-0. View

2.
Notebaart R, van Enckevort F, Francke C, Siezen R, Teusink B . Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics. 2006; 7:296. PMC: 1550432. DOI: 10.1186/1471-2105-7-296. View

3.
Edwards J, Covert M, Palsson B . Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol. 2002; 4(3):133-40. DOI: 10.1046/j.1462-2920.2002.00282.x. View

4.
Beard D, Liang S, Qian H . Energy balance for analysis of complex metabolic networks. Biophys J. 2002; 83(1):79-86. PMC: 1302128. DOI: 10.1016/S0006-3495(02)75150-3. View

5.
Karp P, Paley S, Romero P . The Pathway Tools software. Bioinformatics. 2002; 18 Suppl 1:S225-32. DOI: 10.1093/bioinformatics/18.suppl_1.s225. View