» Articles » PMID: 24723921

A Mathematical Model of Metabolism and Regulation Provides a Systems-level View of How Escherichia Coli Responds to Oxygen

Overview
Journal Front Microbiol
Specialty Microbiology
Date 2014 Apr 12
PMID 24723921
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon, and redox metabolism. The measurement of transcript levels, metabolite concentrations and metabolic fluxes per se gives an incomplete picture. An appreciation of the interdependencies between the different measurement values is essential for systems-level understanding. Mathematical modeling has the potential to provide a coherent and quantitative description of the interplay between gene expression, metabolite concentrations, and metabolic fluxes. Escherichia coli undergoes major adaptations in central metabolism when the availability of oxygen changes. Thus, an integrated description of the oxygen response provides a benchmark of our understanding of carbon, energy, and redox metabolism. We present the first comprehensive model of the central metabolism of E. coli that describes steady-state metabolism at different levels of oxygen availability. Variables of the model are metabolite concentrations, gene expression levels, transcription factor activities, metabolic fluxes, and biomass concentration. We analyze the model with respect to the production capabilities of central metabolism of E. coli. In particular, we predict how precursor and biomass concentration are affected by product formation.

Citing Articles

Quantitative proteomics reveals oxygen-induced adaptations in TA2.A1 microaerobic chemostat cultures.

de Jong S, Wissink M, Yildirim K, Pabst M, van Loosdrecht M, McMillan D Front Microbiol. 2024; 15:1468929.

PMID: 39529675 PMC: 11551716. DOI: 10.3389/fmicb.2024.1468929.


Integrating glycolysis, citric acid cycle, pentose phosphate pathway, and fatty acid beta-oxidation into a single computational model.

Kloska S, Palczynski K, Marciniak T, Talaska T, Wysocki B, Davis P Sci Rep. 2023; 13(1):14484.

PMID: 37660197 PMC: 10475038. DOI: 10.1038/s41598-023-41765-3.


Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics.

Borisov V, Forte E Int J Mol Sci. 2021; 22(23).

PMID: 34884491 PMC: 8657789. DOI: 10.3390/ijms222312688.


Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D.

Grauel A, Kagi J, Rasmussen T, Makarchuk I, Oppermann S, Moumbock A Nat Commun. 2021; 12(1):6498.

PMID: 34764272 PMC: 8585947. DOI: 10.1038/s41467-021-26835-2.


Measuring and modeling energy and power consumption in living microbial cells with a synthetic ATP reporter.

Deng Y, Beahm D, Ionov S, Sarpeshkar R BMC Biol. 2021; 19(1):101.

PMID: 34001118 PMC: 8130387. DOI: 10.1186/s12915-021-01023-2.


References
1.
Brondsted L, Atlung T . Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli. J Bacteriol. 1996; 178(6):1556-64. PMC: 177838. DOI: 10.1128/jb.178.6.1556-1564.1996. View

2.
Kummel A, Panke S, Heinemann M . Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics. 2006; 7:512. PMC: 1664590. DOI: 10.1186/1471-2105-7-512. View

3.
Klamt S, Grammel H, Straube R, Ghosh R, Gilles E . Modeling the electron transport chain of purple non-sulfur bacteria. Mol Syst Biol. 2008; 4:156. PMC: 2238716. DOI: 10.1038/msb4100191. View

4.
Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S . Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol. 2011; 90(6):1915-22. DOI: 10.1007/s00253-011-3199-1. View

5.
Peercy B, Cox S, Shalel-Levanon S, San K, Bennett G . A kinetic model of oxygen regulation of cytochrome production in Escherichia coli. J Theor Biol. 2006; 242(3):547-63. DOI: 10.1016/j.jtbi.2006.04.006. View