» Articles » PMID: 17035522

Next-generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits

Overview
Journal J Neurosci
Specialty Neurology
Date 2006 Oct 13
PMID 17035522
Citations 284
Authors
Affiliations
Soon will be listed here.
Abstract

Emerging technologies from optics, genetics, and bioengineering are being combined for studies of intact neural circuits. The rapid progression of such interdisciplinary "optogenetic" approaches has expanded capabilities for optical imaging and genetic targeting of specific cell types. Here we explore key recent advances that unite optical and genetic approaches, focusing on promising techniques that either allow novel studies of neural dynamics and behavior or provide fresh perspectives on classic model systems.

Citing Articles

Light-based technologies in immunotherapy: advances, mechanisms and applications.

Frumento D, talu S Immunotherapy. 2025; 17(2):123-131.

PMID: 40032620 PMC: 11901425. DOI: 10.1080/1750743X.2025.2470111.


Photocontrolling the Enantioselectivity of a Phosphotriesterase via Incorporation of a Light-Responsive Unnatural Amino Acid.

Hiefinger C, Zinner G, Furtges T, Narindoshvili T, Schindler S, Bruckmann A JACS Au. 2025; 5(2):858-870.

PMID: 40017780 PMC: 11863162. DOI: 10.1021/jacsau.4c01106.


Advances in physiological and clinical relevance of hiPSC-derived brain models for precision medicine pipelines.

Imani Farahani N, Lin L, Nazir S, Naderi A, Rokos L, McIntosh A Front Cell Neurosci. 2025; 18():1478572.

PMID: 39835290 PMC: 11743572. DOI: 10.3389/fncel.2024.1478572.


How and where Effectively Apply Cerebellum Stimulation: The frequency-dependent Modulation of Cerebellar Output by Transcranial Alternating Current Stimulation.

Romano V, Manto M Cerebellum. 2025; 24(1):22.

PMID: 39745545 DOI: 10.1007/s12311-024-01772-0.


Monitoring and modulating cardiac bioelectricity: from Einthoven to end-user.

De Coster T, Nobacht A, Oostendorp T, de Vries A, Coronel R, Pijnappels D Europace. 2024; 27(1).

PMID: 39716965 PMC: 11711590. DOI: 10.1093/europace/euae300.


References
1.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P . Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003; 100(24):13940-5. PMC: 283525. DOI: 10.1073/pnas.1936192100. View

2.
Neve R, Neve K, Nestler E, Carlezon Jr W . Use of herpes virus amplicon vectors to study brain disorders. Biotechniques. 2005; 39(3):381-91. DOI: 10.2144/05393PS01. View

3.
Nagel G, Brauner M, Liewald J, Adeishvili N, Bamberg E, Gottschalk A . Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol. 2005; 15(24):2279-84. DOI: 10.1016/j.cub.2005.11.032. View

4.
Jung J, Schnitzer M . Multiphoton endoscopy. Opt Lett. 2003; 28(11):902-4. DOI: 10.1364/ol.28.000902. View

5.
Li X, Gutierrez D, Gartz Hanson M, Han J, Mark M, Chiel H . Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A. 2005; 102(49):17816-21. PMC: 1292990. DOI: 10.1073/pnas.0509030102. View