» Articles » PMID: 16986274

Biochemical Networks with Uncertain Parameters

Overview
Specialty Biology
Date 2006 Sep 22
PMID 16986274
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The modelling of biochemical networks becomes delicate if kinetic parameters are varying, uncertain or unknown. Facing this situation, we quantify uncertain knowledge or beliefs about parameters by probability distributions. We show how parameter distributions can be used to infer probabilistic statements about dynamic network properties, such as steady-state fluxes and concentrations, signal characteristics or control coefficients. The parameter distributions can also serve as priors in Bayesian statistical analysis. We propose a graphical scheme, the 'dependence graph', to bring out known dependencies between parameters, for instance, due to the equilibrium constants. If a parameter distribution is narrow, the resulting distribution of the variables can be computed by expanding them around a set of mean parameter values. We compute the distributions of concentrations, fluxes and probabilities for qualitative variables such as flux directions. The probabilistic framework allows the study of metabolic correlations, and it provides simple measures of variability and stochastic sensitivity. It also shows clearly how the variability of biological systems is related to the metabolic response coefficients.

Citing Articles

Conditions for the origin of homochirality in primordial catalytic reaction networks.

Gagnon J, Hochberg D Sci Rep. 2023; 13(1):9885.

PMID: 37336897 PMC: 10279737. DOI: 10.1038/s41598-023-36852-4.


Structural Thermokinetic Modelling.

Liebermeister W Metabolites. 2022; 12(5).

PMID: 35629936 PMC: 9144996. DOI: 10.3390/metabo12050434.


Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus.

Sofia Figueiredo A, Kouril T, Esser D, Haferkamp P, Wieloch P, Schomburg D PLoS One. 2017; 12(7):e0180331.

PMID: 28692669 PMC: 5503249. DOI: 10.1371/journal.pone.0180331.


Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements.

Davidi D, Noor E, Liebermeister W, Bar-Even A, Flamholz A, Tummler K Proc Natl Acad Sci U S A. 2016; 113(12):3401-6.

PMID: 26951675 PMC: 4812741. DOI: 10.1073/pnas.1514240113.


Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

Schillings C, Sunnaker M, Stelling J, Schwab C PLoS Comput Biol. 2015; 11(8):e1004457.

PMID: 26317784 PMC: 4552555. DOI: 10.1371/journal.pcbi.1004457.