» Articles » PMID: 17173669

Bringing Metabolic Networks to Life: Convenience Rate Law and Thermodynamic Constraints

Overview
Publisher Biomed Central
Date 2006 Dec 19
PMID 17173669
Citations 71
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes.

Results: We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme.

Conclusion: Convenience kinetics can be used to translate a biochemical network--manually or automatically--into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases.

Citing Articles

Thermodynamics shape the enzyme burden of glycolytic pathways.

Khana D, Jen A, Shishkova E, Thusoo E, Williams J, Henkel A bioRxiv. 2025; .

PMID: 39974948 PMC: 11838459. DOI: 10.1101/2025.01.31.635972.


Identifying effective evolutionary strategies-based protocol for uncovering reaction kinetic parameters under the effect of measurement noises.

Yeo H, Vijay V, Selvarajoo K BMC Biol. 2024; 22(1):235.

PMID: 39402553 PMC: 11476556. DOI: 10.1186/s12915-024-02019-4.


Optimal enzyme profiles in unbranched metabolic pathways.

Noor E, Liebermeister W Interface Focus. 2024; 14(1):20230029.

PMID: 38344407 PMC: 10853694. DOI: 10.1098/rsfs.2023.0029.


Rational strain design with minimal phenotype perturbation.

Narayanan B, Weilandt D, Masid M, Miskovic L, Hatzimanikatis V Nat Commun. 2024; 15(1):723.

PMID: 38267425 PMC: 10808392. DOI: 10.1038/s41467-024-44831-0.


Multi-scale models of whole cells: progress and challenges.

Georgouli K, Yeom J, Blake R, Navid A Front Cell Dev Biol. 2023; 11:1260507.

PMID: 38020904 PMC: 10661945. DOI: 10.3389/fcell.2023.1260507.


References
1.
Savageau M . Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J Theor Biol. 1970; 26(2):215-26. DOI: 10.1016/s0022-5193(70)80013-3. View

2.
Beard D, Liang S, Qian H . Energy balance for analysis of complex metabolic networks. Biophys J. 2002; 83(1):79-86. PMC: 1302128. DOI: 10.1016/S0006-3495(02)75150-3. View

3.
Visser D, Schmid J, Mauch K, Reuss M, Heijnen J . Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metab Eng. 2004; 6(4):378-90. DOI: 10.1016/j.ymben.2004.07.001. View

4.
Chassagnole C, Rais B, Quentin E, Fell D, Mazat J . An integrated study of threonine-pathway enzyme kinetics in Escherichia coli. Biochem J. 2001; 356(Pt 2):415-23. PMC: 1221852. DOI: 10.1042/0264-6021:3560415. View

5.
BRIGGS G, Haldane J . A Note on the Kinetics of Enzyme Action. Biochem J. 1925; 19(2):338-9. PMC: 1259181. DOI: 10.1042/bj0190338. View