Vega-Macaya F, Villarreal P, Pena T, Abarca V, Cofre A, Oporto C
FEMS Yeast Res. 2025; 25.
PMID: 39880790
PMC: 11878536.
DOI: 10.1093/femsyr/foaf004.
Scholes A, Stuecker T, Hood S, Locke C, Stacy C, Zhang Q
BMC Biol. 2024; 22(1):149.
PMID: 38965504
PMC: 11225312.
DOI: 10.1186/s12915-024-01945-7.
Wu D, Xu F, Xu Y, Huang M, Li Z, Chu J
Synth Syst Biotechnol. 2024; 9(1):33-42.
PMID: 38234412
PMC: 10793177.
DOI: 10.1016/j.synbio.2023.12.004.
Holland K, Blazeck J
J Biol Eng. 2022; 16(1):37.
PMID: 36575525
PMC: 9793380.
DOI: 10.1186/s13036-022-00315-7.
Ribeiro R, Bourbon-Melo N, Sa-Correia I
Front Microbiol. 2022; 13:953479.
PMID: 35966694
PMC: 9366716.
DOI: 10.3389/fmicb.2022.953479.
Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
Samakkarn W, Ratanakhanokchai K, Soontorngun N
Appl Environ Microbiol. 2021; 87(16):e0058821.
PMID: 34105981
PMC: 8315178.
DOI: 10.1128/AEM.00588-21.
CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate.
Gutmann F, Jann C, Pereira F, Johansson A, Steinmetz L, Patil K
Biotechnol Biofuels. 2021; 14(1):41.
PMID: 33568224
PMC: 7874482.
DOI: 10.1186/s13068-021-01880-7.
The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering.
Mota M, Martins L, Sa-Correia I
J Fungi (Basel). 2021; 7(2).
PMID: 33513997
PMC: 7911966.
DOI: 10.3390/jof7020090.
Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy.
Bubis J, Spasskaya D, Gorshkov V, Kjeldsen F, Kofanova A, Lekanov D
Appl Microbiol Biotechnol. 2020; 104(9):4027-4041.
PMID: 32157425
DOI: 10.1007/s00253-020-10518-x.
Physiological responses of Saccharomyces cerevisiae to industrially relevant conditions: Slow growth, low pH, and high CO levels.
Hakkaart X, Liu Y, Hulst M, El Masoudi A, Peuscher E, Pronk J
Biotechnol Bioeng. 2019; 117(3):721-735.
PMID: 31654410
PMC: 7028085.
DOI: 10.1002/bit.27210.
Membrane Fluidity of Saccharomyces cerevisiae from (Chinese Rice Wine) Is Variably Regulated by To Offset the Disruptive Effect of Ethanol.
Yang Y, Xia Y, Hu W, Tao L, Ni L, Yu J
Appl Environ Microbiol. 2019; 85(23).
PMID: 31540996
PMC: 6856327.
DOI: 10.1128/AEM.01620-19.
Screening the Nonessential Gene Deletion Library Reveals Diverse Mechanisms of Action for Antifungal Plant Defensins.
Parisi K, Doyle S, Lee E, Lowe R, van der Weerden N, Anderson M
Antimicrob Agents Chemother. 2019; 63(11).
PMID: 31451498
PMC: 6811411.
DOI: 10.1128/AAC.01097-19.
Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae.
Udom N, Chansongkrow P, Charoensawan V, Auesukaree C
Appl Environ Microbiol. 2019; 85(15).
PMID: 31101611
PMC: 6643247.
DOI: 10.1128/AEM.00551-19.
Genetic Basis of Variation in Heat and Ethanol Tolerance in .
Riles L, Fay J
G3 (Bethesda). 2018; 9(1):179-188.
PMID: 30459179
PMC: 6325899.
DOI: 10.1534/g3.118.200566.
Genotype-by-Environment-by-Environment Interactions in the Transcriptomic Response to Alcohols and Anaerobiosis.
Sardi M, Krause M, Heilberger J, Gasch A
G3 (Bethesda). 2018; 8(12):3881-3890.
PMID: 30301737
PMC: 6288825.
DOI: 10.1534/g3.118.200677.
Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait.
Stuecker T, Scholes A, Lewis J
PLoS Genet. 2018; 14(4):e1007335.
PMID: 29649251
PMC: 5978988.
DOI: 10.1371/journal.pgen.1007335.
Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols.
Su H, Lin J, Wang G
Sci Rep. 2016; 6:39543.
PMID: 27996038
PMC: 5172369.
DOI: 10.1038/srep39543.
Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in .
Marti-Raga M, Peltier E, Mas A, Beltran G, Marullo P
G3 (Bethesda). 2016; 7(2):399-412.
PMID: 27903630
PMC: 5295589.
DOI: 10.1534/g3.116.037283.
Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation.
Kitichantaropas Y, Boonchird C, Sugiyama M, Kaneko Y, Harashima S, Auesukaree C
AMB Express. 2016; 6(1):107.
PMID: 27826949
PMC: 5101244.
DOI: 10.1186/s13568-016-0285-x.
Prioritized Expression of BTN2 of Saccharomyces cerevisiae under Pronounced Translation Repression Induced by Severe Ethanol Stress.
Yamauchi Y, Izawa S
Front Microbiol. 2016; 7:1319.
PMID: 27602028
PMC: 4993754.
DOI: 10.3389/fmicb.2016.01319.