» Articles » PMID: 16756676

SBEAMS-Microarray: Database Software Supporting Genomic Expression Analyses for Systems Biology

Overview
Publisher Biomed Central
Specialty Biology
Date 2006 Jun 8
PMID 16756676
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The biological information in genomic expression data can be understood, and computationally extracted, in the context of systems of interacting molecules. The automation of this information extraction requires high throughput management and analysis of genomic expression data, and integration of these data with other data types.

Results: SBEAMS-Microarray, a module of the open-source Systems Biology Experiment Analysis Management System (SBEAMS), enables MIAME-compliant storage, management, analysis, and integration of high-throughput genomic expression data. It is interoperable with the Cytoscape network integration, visualization, analysis, and modeling software platform.

Conclusion: SBEAMS-Microarray provides end-to-end support for genomic expression analyses for network-based systems biology research.

Citing Articles

Bridging data management platforms and visualization tools to enable ad-hoc and smart analytics in life sciences.

Panse C, Trachsel C, Turker C J Integr Bioinform. 2022; 19(4).

PMID: 36073980 PMC: 9800043. DOI: 10.1515/jib-2022-0031.


Systematic Discovery of Archaeal Transcription Factor Functions in Regulatory Networks through Quantitative Phenotyping Analysis.

Darnell C, Tonner P, Gulli J, Schmidler S, Schmid A mSystems. 2017; 2(5).

PMID: 28951888 PMC: 5605881. DOI: 10.1128/mSystems.00032-17.


Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics.

Deutsch E, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz R Proteomics Clin Appl. 2015; 9(7-8):745-54.

PMID: 25631240 PMC: 4506239. DOI: 10.1002/prca.201400164.


Evolution of context dependent regulation by expansion of feast/famine regulatory proteins.

Plaisier C, Lo F, Ashworth J, Brooks A, Beer K, Kaur A BMC Syst Biol. 2014; 8:122.

PMID: 25394904 PMC: 4236453. DOI: 10.1186/s12918-014-0122-2.


A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen.

Yoon S, Turkarslan S, Reiss D, Pan M, Burn J, Costa K Genome Res. 2013; 23(11):1839-51.

PMID: 24089473 PMC: 3814884. DOI: 10.1101/gr.153916.112.


References
1.
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C . Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001; 29(4):365-71. DOI: 10.1038/ng1201-365. View

2.
Reiss D, Avila-Campillo I, Thorsson V, Schwikowski B, Galitski T . Tools enabling the elucidation of molecular pathways active in human disease: application to Hepatitis C virus infection. BMC Bioinformatics. 2005; 6:154. PMC: 1181626. DOI: 10.1186/1471-2105-6-154. View

3.
Saal L, Troein C, Vallon-Christersson J, Gruvberger S, Borg A, Peterson C . BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol. 2002; 3(8):SOFTWARE0003. PMC: 139402. DOI: 10.1186/gb-2002-3-8-software0003. View

4.
Spellman P, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S . Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol. 2002; 3(9):RESEARCH0046. PMC: 126871. DOI: 10.1186/gb-2002-3-9-research0046. View

5.
Workman C, Jensen L, Jarmer H, Berka R, Gautier L, Nielser H . A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol. 2002; 3(9):research0048. PMC: 126873. DOI: 10.1186/gb-2002-3-9-research0048. View