» Articles » PMID: 16677430

Plant NBS-LRR Proteins: Adaptable Guards

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2006 May 9
PMID 16677430
Citations 415
Authors
Affiliations
Soon will be listed here.
Abstract

The majority of disease resistance genes in plants encode nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins. This large family is encoded by hundreds of diverse genes per genome and can be subdivided into the functionally distinct TIR-domain-containing (TNL) and CC-domain-containing (CNL) subfamilies. Their precise role in recognition is unknown; however, they are thought to monitor the status of plant proteins that are targeted by pathogen effectors.

Citing Articles

Genome-Wide Association Study and Genomic Prediction of Soybean Mosaic Virus Resistance.

He D, Wu X, Liu Z, Yang Q, Shi X, Song Q Int J Mol Sci. 2025; 26(5).

PMID: 40076727 PMC: 11900104. DOI: 10.3390/ijms26052106.


Phylogenetic, Structural, and Evolutionary Insights into Pepper NBS-LRR Resistance Genes.

Liu J, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z Int J Mol Sci. 2025; 26(5).

PMID: 40076456 PMC: 11899730. DOI: 10.3390/ijms26051828.


High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01.

Wu D, Zhao C, Korani W, Thompson E, Wang H, Agarwal G BMC Genomics. 2025; 26(1):224.

PMID: 40050730 PMC: 11887336. DOI: 10.1186/s12864-025-11366-7.


The genomic landscape of gene-level structural variations in Japanese and global soybean Glycine max cultivars.

Yano R, Li F, Hiraga S, Takeshima R, Kobayashi M, Toda K Nat Genet. 2025; .

PMID: 40033060 DOI: 10.1038/s41588-025-02113-5.


Genome-Wide In Silico Analysis of Leucine-Rich Repeat -Genes in : Classification and Expression Insights.

Bae S, Zoclanclounon Y, Park G, Lee J, Kim T Genes (Basel). 2025; 16(2).

PMID: 40004529 PMC: 11855831. DOI: 10.3390/genes16020200.


References
1.
Mestre P, Baulcombe D . Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell. 2006; 18(2):491-501. PMC: 1356554. DOI: 10.1105/tpc.105.037234. View

2.
Lu R, Malcuit I, Moffett P, Ruiz M, Peart J, Wu A . High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 2003; 22(21):5690-9. PMC: 275403. DOI: 10.1093/emboj/cdg546. View

3.
Nimchuk Z, Eulgem T, Holt 3rd B, Dangl J . Recognition and response in the plant immune system. Annu Rev Genet. 2003; 37:579-609. DOI: 10.1146/annurev.genet.37.110801.142628. View

4.
Kruger J, Thomas C, Golstein C, Dixon M, Smoker M, Tang S . A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science. 2002; 296(5568):744-7. DOI: 10.1126/science.1069288. View

5.
Warren R, Henk A, Mowery P, HOLUB E, Innes R . A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell. 1998; 10(9):1439-52. PMC: 144076. DOI: 10.1105/tpc.10.9.1439. View