» Articles » PMID: 16565216

Cytoplasmic Gamma-actin Contributes to a Compensatory Remodeling Response in Dystrophin-deficient Muscle

Overview
Specialty Science
Date 2006 Mar 28
PMID 16565216
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Dystrophin mechanically links the costameric cytoskeleton and sarcolemma, yet dystrophin-deficient muscle exhibits abnormalities in cell signaling, gene expression, and contractile function that are not clearly understood. We generated new antibodies specific for cytoplasmic gamma-actin and confirmed that gamma-actin most predominantly localized to the sarcolemma and in a faint reticular lattice within normal muscle cells. However, we observed that gamma-actin levels were increased 10-fold at the sarcolemma and within the cytoplasm of striated muscle cells from dystrophin-deficient mdx mice. Transgenic overexpression of the dystrophin homologue utrophin, or functional dystrophin constructs in mdx muscle, restored gamma-actin to normal levels, whereas gamma-actin remained elevated in mdx muscle expressing nonfunctional dystrophin constructs. We conclude that increased cytoplasmic gamma-actin in dystrophin-deficient muscle may be a compensatory response to fortify the weakened costameric lattice through recruitment of parallel mechanical linkages. However, the presence of excessive myoplasmic gamma-actin may also contribute to altered cell signaling or gene expression in dystrophin-deficient muscle.

Citing Articles

The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer.

Basu A, Paul M, Weiss S Biophys Rev (Melville). 2024; 3(4):041304.

PMID: 38505516 PMC: 10903407. DOI: 10.1063/5.0096188.


MEK1-ERK1/2 signaling regulates the cardiomyocyte non-sarcomeric actin cytoskeletal network.

Grimes K, Maillet M, Swoboda C, Bowers S, Millay D, Molkentin J Am J Physiol Heart Circ Physiol. 2023; 326(1):H180-H189.

PMID: 37999644 PMC: 11551003. DOI: 10.1152/ajpheart.00612.2023.


Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review.

Szwec S, Kaplucha Z, Chamberlain J, Konieczny P BioDrugs. 2023; 38(1):95-119.

PMID: 37917377 PMC: 10789850. DOI: 10.1007/s40259-023-00632-3.


Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex.

Mirouse V Front Cell Dev Biol. 2023; 11:1182524.

PMID: 37384252 PMC: 10293626. DOI: 10.3389/fcell.2023.1182524.


The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction.

Samuel Wilson D, Tinker A, Iskratsch T Commun Biol. 2022; 5(1):1022.

PMID: 36168044 PMC: 9515174. DOI: 10.1038/s42003-022-03980-y.


References
1.
Kolodziejczyk S, Walsh G, Balazsi K, Seale P, Sandoz J, Hierlihy A . Activation of JNK1 contributes to dystrophic muscle pathogenesis. Curr Biol. 2001; 11(16):1278-82. DOI: 10.1016/s0960-9822(01)00397-9. View

2.
Spencer M, Walsh C, Dorshkind K, Rodriguez E, Tidball J . Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Invest. 1997; 99(11):2745-51. PMC: 508121. DOI: 10.1172/JCI119464. View

3.
Porter J, Khanna S, Kaminski H, Rao J, Merriam A, Richmonds C . A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet. 2002; 11(3):263-72. DOI: 10.1093/hmg/11.3.263. View

4.
Schratt G, Philippar U, Berger J, Schwarz H, Heidenreich O, Nordheim A . Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J Cell Biol. 2002; 156(4):737-50. PMC: 2174087. DOI: 10.1083/jcb.200106008. View

5.
Harper S, Hauser M, Dellorusso C, Duan D, Crawford R, Phelps S . Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med. 2002; 8(3):253-61. DOI: 10.1038/nm0302-253. View