» Articles » PMID: 16308329

Reciprocal Epithelial-mesenchymal FGF Signaling is Required for Cecal Development

Overview
Journal Development
Specialty Biology
Date 2005 Nov 26
PMID 16308329
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Fibroblast growth factor (FGF) signaling mediates reciprocal mesenchymal-epithelial cell interactions in the developing mouse lung and limb. In the gastrointestinal (GI) tract, FGF10 is expressed in the cecal mesenchyme and signals to an epithelial splice form of FGF receptor (FGFR) 2 to regulate epithelial budding. Here, we identify FGF9 as a reciprocal epithelial-mesenchymal signal required for cecal morphogenesis. Fgf9 null (Fgf9(-/-)) mouse embryos have agenesis of the embryonic cecum, lacking both mesenchymal expansion and an epithelial bud. In the cecal region of Fgf9(-/-) embryos, mesenchymal expression of Fgf10 and Bmp4 is notably absent, whereas the expression of epithelial markers, such as sonic hedgehog, is not affected. Using epithelial and whole explant cultures, we show that FGF9 signals to mesenchymal FGFRs and that FGF10 signals to epithelial FGFRs. Taken together, these data show that an epithelial FGF9 signal is necessary for the expansion of cecal mesenchyme and the expression of mesenchymal genes that are required for epithelial budding. Thus, these data add to our understanding of FGF-mediated reciprocal epithelial-mesenchymal signaling.

Citing Articles

Essential Role of BMP4 Signaling in the Avian Ceca in Colorectal Enteric Nervous System Development.

Kovacs T, Halasy V, Petho C, Szocs E, Soos A, Dora D Int J Mol Sci. 2023; 24(21).

PMID: 37958648 PMC: 10650322. DOI: 10.3390/ijms242115664.


Loss of Fgf9 in mice leads to pancreatic hypoplasia and asplenia.

Patzek S, Liu Z, de la O S, Chang S, Byrnes L, Zhang X iScience. 2023; 26(4):106500.

PMID: 37096042 PMC: 10121468. DOI: 10.1016/j.isci.2023.106500.


Stromal regulation of the intestinal barrier.

Sylvestre M, Di Carlo S, Peduto L Mucosal Immunol. 2023; 16(2):221-231.

PMID: 36708806 PMC: 10270662. DOI: 10.1016/j.mucimm.2023.01.006.


New developments in the biology of fibroblast growth factors.

Ornitz D, Itoh N WIREs Mech Dis. 2022; 14(4):e1549.

PMID: 35142107 PMC: 10115509. DOI: 10.1002/wsbm.1549.


Mesenchymal-epithelial crosstalk shapes intestinal regionalisation via Wnt and Shh signalling.

Maimets M, Pedersen M, Guiu J, Dreier J, Thodberg M, Antoku Y Nat Commun. 2022; 13(1):715.

PMID: 35132078 PMC: 8821716. DOI: 10.1038/s41467-022-28369-7.


References
1.
Tanaka E, Gann A . Limb development. The budding role of FGF. Curr Biol. 1995; 5(6):594-7. DOI: 10.1016/s0960-9822(95)00118-7. View

2.
Bitgood M, McMahon A . Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol. 1995; 172(1):126-38. DOI: 10.1006/dbio.1995.0010. View

3.
Bellusci S, Henderson R, Winnier G, Oikawa T, Hogan B . Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development. 1996; 122(6):1693-702. DOI: 10.1242/dev.122.6.1693. View

4.
Ornitz D, Xu J, Colvin J, McEwen D, MacArthur C, Coulier F . Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996; 271(25):15292-7. DOI: 10.1074/jbc.271.25.15292. View

5.
Bellusci S, Grindley J, EMOTO H, Itoh N, Hogan B . Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development. 1998; 124(23):4867-78. DOI: 10.1242/dev.124.23.4867. View