» Articles » PMID: 16282360

TRPC1 Functions As a Store-operated Ca2+ Channel in Intestinal Epithelial Cells and Regulates Early Mucosal Restitution After Wounding

Overview
Date 2005 Nov 12
PMID 16282360
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) results from Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through Ca(2+)-permeable ion channels and is crucial for initiating intestinal epithelial restitution to reseal superficial wounds after mucosal injury. Capacitative Ca(2+) entry (CCE) induced by Ca(2+) store depletion represents a major Ca(2+) influx mechanism, but the exact molecular components constituting this process remain elusive. This study determined whether canonical transient receptor potential (TRPC)1 served as a candidate protein for Ca(2+)-permeable channels mediating CCE in intestinal epithelial cells and played an important role in early epithelial restitution. Normal intestinal epithelial cells (the IEC-6 cell line) expressed TRPC1 and TPRC5 and displayed typical records of whole cell store-operated Ca(2+) currents and CCE generated by Ca(2+) influx after depletion of intracellular stores. Induced TRPC1 expression by stable transfection with the TRPC1 gene increased CCE and enhanced cell migration during restitution. Differentiated IEC-Cdx2L1 cells induced by forced expression of the Cdx2 gene highly expressed endogenous TRPC1 and TRPC5 and exhibited increased CCE and cell migration. Inhibition of TRPC1 expression by small interfering RNA specially targeting TRPC1 not only reduced CCE but also inhibited cell migration after wounding. These findings strongly suggest that TRPC1 functions as store-operated Ca(2+) channels and plays a critical role in intestinal epithelial restitution by regulating CCE and intracellular [Ca(2+)](cyt).

Citing Articles

Polysaccharides from promote intestinal epithelial cell migration through affecting the Ca related regulators.

Zhu H, Cao J, Liang X, Luo M, Wang A, Ling Hu J Ginseng Res. 2023; 47(1):89-96.

PMID: 36644379 PMC: 9834020. DOI: 10.1016/j.jgr.2022.05.010.


Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents.

Czigle S, Fialova S, Toth J, Mucaji P, Nagy M, The Oemonom Molecules. 2022; 27(9).

PMID: 35566230 PMC: 9105531. DOI: 10.3390/molecules27092881.


Ca-Permeable Channels/Ca Signaling in the Regulation of Ileal Na/Gln Co-Transport in Mice.

Chu F, Wan H, Xiao W, Dong H, Lu M Front Pharmacol. 2022; 13:816133.

PMID: 35281933 PMC: 8905502. DOI: 10.3389/fphar.2022.816133.


Impact of SOCE Abolition by ORAI1 Knockout on the Proliferation, Adhesion, and Migration of HEK-293 Cells.

Bokhobza A, Ziental-Gelus N, Allart L, Iamshanova O, Vanden Abeele F Cells. 2021; 10(11).

PMID: 34831241 PMC: 8616168. DOI: 10.3390/cells10113016.


Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy.

Sharma A, Ramena G, Elble R Biomedicines. 2021; 9(9).

PMID: 34572262 PMC: 8466575. DOI: 10.3390/biomedicines9091077.