» Articles » PMID: 16193068

The EIF1A C-terminal Domain Promotes Initiation Complex Assembly, Scanning and AUG Selection in Vivo

Overview
Journal EMBO J
Date 2005 Sep 30
PMID 16193068
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

Translation initiation factor 1A stimulates 40S-binding of the eukaryotic initiation factor 2 (eIF2)/GTP/Met-tRNA(iMet) ternary complex (TC) and promotes scanning in vitro. eIF1A contains an OB-fold present in bacterial IF1 plus N- and C-terminal extensions. Truncating the C-terminus (deltaC) or mutating OB-fold residues (66-70) of eIF1A reduced general translation in vivo but increased GCN4 translation (Gcd- phenotype) in a manner suppressed by overexpressing TC. Consistent with this, both mutations diminished 40S-bound TC, eIF5 and eIF3 in vivo, and deltaC impaired TC recruitment in vitro. The assembly defects of the OB-fold mutation can be attributed to reduced 40S-binding of eIF1A, whereas deltaC impairs eIF1A function on the ribosome. A substitution in the C-terminal helix (98-101) also reduced 43S assembly in vivo. Rather than producing a Gcd- phenotype, however, 98-101 impairs GCN4 derepression in a manner consistent with defective scanning by reinitiating ribosomes. Indeed, 98-101 allows formation of aberrant 48S complexes in vitro and increases utilization of non-AUG codons in vivo. Thus, the OB-fold is crucial for ribosome-binding and the C-terminal domain of eIF1A has eukaryotic-specific functions in TC recruitment and scanning.

Citing Articles

Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets.

Sehrawat U Int J Mol Sci. 2024; 25(19).

PMID: 39409166 PMC: 11477148. DOI: 10.3390/ijms251910835.


EIF1AX mutation in thyroid nodules: a histopathologic analysis of 56 cases in the context of institutional practices.

Abi-Raad R, Xu B, Gilani S, Ghossein R, Prasad M Virchows Arch. 2024; 485(5):859-867.

PMID: 39225726 DOI: 10.1007/s00428-024-03914-5.


Protein Arginine Methylation of the Translation Initiation Factor eIF1A Increases Usage of a Near-cognate Start Codon.

Wegman R, Langberg M, Davis R, Liu X, Luo M, Yu M bioRxiv. 2024; .

PMID: 39185183 PMC: 11343201. DOI: 10.1101/2024.08.16.608280.


Editorial: RNA machines.

Shirokikh N, Jensen K, Thakor N Front Genet. 2023; 14:1290420.

PMID: 37829284 PMC: 10565666. DOI: 10.3389/fgene.2023.1290420.


Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity.

She R, Luo J, Weissman J Nucleic Acids Res. 2023; 51(12):6355-6369.

PMID: 37144468 PMC: 10325891. DOI: 10.1093/nar/gkad329.


References
1.
Moazed D, Samaha R, GUALERZI C, Noller H . Specific protection of 16 S rRNA by translational initiation factors. J Mol Biol. 1995; 248(2):207-10. DOI: 10.1016/s0022-2836(95)80042-5. View

2.
Moehle C, Hinnebusch A . Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1991; 11(5):2723-35. PMC: 360042. DOI: 10.1128/mcb.11.5.2723-2735.1991. View

3.
Sette M, van Tilborg P, Spurio R, Kaptein R, Paci M, Gualerzi C . The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif. EMBO J. 1997; 16(6):1436-43. PMC: 1169740. DOI: 10.1093/emboj/16.6.1436. View

4.
Cross F . 'Marker swap' plasmids: convenient tools for budding yeast molecular genetics. Yeast. 1997; 13(7):647-53. DOI: 10.1002/(SICI)1097-0061(19970615)13:7<647::AID-YEA115>3.0.CO;2-#. View

5.
Huang H, Yoon H, Hannig E, Donahue T . GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev. 1997; 11(18):2396-413. PMC: 316512. DOI: 10.1101/gad.11.18.2396. View