» Articles » PMID: 29206102

EIF1A Residues Implicated in Cancer Stabilize Translation Preinitiation Complexes and Favor Suboptimal Initiation Sites in Yeast

Overview
Journal Elife
Specialty Biology
Date 2017 Dec 6
PMID 29206102
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

The translation pre-initiation complex (PIC) scans the mRNA for an AUG codon in favorable context, and AUG recognition stabilizes a closed PIC conformation. The unstructured N-terminal tail (NTT) of yeast eIF1A deploys five basic residues to contact tRNA, mRNA, or 18S rRNA exclusively in the closed state. Interestingly, mutations altering the human eIF1A NTT are associated with uveal melanoma (UM). We found that substituting all five basic residues, and seven UM-associated substitutions, in yeast eIF1A suppresses initiation at near-cognate UUG codons and AUGs in poor context. Ribosome profiling of NTT substitution R13P reveals heightened discrimination against unfavorable AUG context genome-wide. Both R13P and K16D substitutions destabilize the closed complex at UUG codons in reconstituted PICs. Thus, electrostatic interactions involving the eIF1A NTT stabilize the closed conformation and promote utilization of suboptimal start codons. We predict UM-associated mutations alter human gene expression by increasing discrimination against poor initiation sites.

Citing Articles

Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets.

Sehrawat U Int J Mol Sci. 2024; 25(19).

PMID: 39409166 PMC: 11477148. DOI: 10.3390/ijms251910835.


Structural basis of AUC codon discrimination during translation initiation in yeast.

Villamayor-Belinchon L, Sharma P, Gordiyenko Y, Llacer J, Hussain T Nucleic Acids Res. 2024; 52(18):11317-11335.

PMID: 39193907 PMC: 11472065. DOI: 10.1093/nar/gkae737.


Protein Arginine Methylation of the Translation Initiation Factor eIF1A Increases Usage of a Near-cognate Start Codon.

Wegman R, Langberg M, Davis R, Liu X, Luo M, Yu M bioRxiv. 2024; .

PMID: 39185183 PMC: 11343201. DOI: 10.1101/2024.08.16.608280.


Sex chromosome-encoded protein homologs: current progress and open questions.

Owens M, Yanas A, Liu K Nat Struct Mol Biol. 2024; 31(8):1156-1166.

PMID: 39123067 DOI: 10.1038/s41594-024-01362-y.


The Beak of Eukaryotic Ribosomes: Life, Work and Miracles.

Martin-Villanueva S, Galmozzi C, Ruger-Herreros C, Kressler D, de la Cruz J Biomolecules. 2024; 14(7).

PMID: 39062596 PMC: 11274626. DOI: 10.3390/biom14070882.


References
1.
Saini A, Nanda J, Lorsch J, Hinnebusch A . Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNA(i)(Met) binding to the ribosome. Genes Dev. 2010; 24(1):97-110. PMC: 2802195. DOI: 10.1101/gad.1871910. View

2.
Hinnebusch A . The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem. 2014; 83:779-812. DOI: 10.1146/annurev-biochem-060713-035802. View

3.
Pelechano V, Wei W, Steinmetz L . Extensive transcriptional heterogeneity revealed by isoform profiling. Nature. 2013; 497(7447):127-31. PMC: 3705217. DOI: 10.1038/nature12121. View

4.
Acker M, Kolitz S, Mitchell S, Nanda J, Lorsch J . Reconstitution of yeast translation initiation. Methods Enzymol. 2007; 430:111-45. DOI: 10.1016/S0076-6879(07)30006-2. View

5.
Grant C, Miller P, Hinnebusch A . Requirements for intercistronic distance and level of eukaryotic initiation factor 2 activity in reinitiation on GCN4 mRNA vary with the downstream cistron. Mol Cell Biol. 1994; 14(4):2616-28. PMC: 358629. DOI: 10.1128/mcb.14.4.2616-2628.1994. View