» Articles » PMID: 15706032

Saccharomyces Cerevisiae Imports the Cytosolic Pathway for Gln-tRNA Synthesis into the Mitochondrion

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2005 Feb 12
PMID 15706032
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

Aminoacyl-tRNA (aa-tRNA) formation, an essential process in protein biosynthesis, is generally achieved by direct attachment of an amino acid to tRNA by the aa-tRNA synthetases. An exception is Gln-tRNA synthesis, which in eukaryotes is catalyzed by glutaminyl-tRNA synthetase (GlnRS), while most bacteria, archaea, and chloroplasts employ the transamidation pathway, in which a tRNA-dependent glutamate modification generates Gln-tRNA. Mitochondrial protein synthesis is carried out normally by mitochondrial enzymes and organelle-encoded tRNAs that are different from their cytoplasmic counterparts. Early work suggested that mitochondria use the transamidation pathway for Gln-tRNA formation. We found no biochemical support for this in Saccharomyces cerevisiae mitochondria, but demonstrated the presence of the cytoplasmic GlnRS in the organelle and its involvement in mitochondrial Gln-tRNA synthesis. In addition, we showed in vivo localization of cytoplasmic tRNAGln in mitochondria and demonstrated its role in mitochondrial translation. We furthermore reconstituted in vitro cytoplasmic tRNAGln import into mitochondria by a novel mechanism. This tRNA import mechanism expands our knowledge of RNA trafficking in the eukaryotic cell. These findings change our view of the evolution of organellar protein synthesis.

Citing Articles

The subcellular distribution of miRNA isoforms, tRNA-derived fragments, and rRNA-derived fragments depends on nucleotide sequence and cell type.

Cherlin T, Jing Y, Shah S, Kennedy A, Telonis A, Pliatsika V BMC Biol. 2024; 22(1):205.

PMID: 39267057 PMC: 11397057. DOI: 10.1186/s12915-024-01970-6.


Comparative analysis of 43 distinct RNA modifications by nanopore tRNA sequencing.

White L, Dobson K, Del Pozo S, Bilodeaux J, Andersen S, Baldwin A bioRxiv. 2024; .

PMID: 39091754 PMC: 11291079. DOI: 10.1101/2024.07.23.604651.


Mitochondrion-to-nucleus communication mediated by RNA export: a survey of potential mechanisms and players across eukaryotes.

Muneretto G, Plazzi F, Passamonti M Biol Lett. 2024; 20(7):20240147.

PMID: 38982851 PMC: 11283861. DOI: 10.1098/rsbl.2024.0147.


ANT2 functions as a translocon for mitochondrial cross-membrane translocation of RNAs.

Wang P, Zhang L, Chen S, Li R, Liu P, Li X Cell Res. 2024; 34(7):504-521.

PMID: 38811766 PMC: 11217343. DOI: 10.1038/s41422-024-00978-5.


Localization of RNAs to the mitochondria-mechanisms and functions.

Sharma S, Fazal F RNA. 2024; 30(6):597-608.

PMID: 38448244 PMC: 11098466. DOI: 10.1261/rna.079999.124.


References
1.
Hartl F, Ostermann J, Guiard B, Neupert W . Successive translocation into and out of the mitochondrial matrix: targeting of proteins to the intermembrane space by a bipartite signal peptide. Cell. 1987; 51(6):1027-37. DOI: 10.1016/0092-8674(87)90589-7. View

2.
Feng L, Tumbula-Hansen D, Toogood H, Soll D . Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Proc Natl Acad Sci U S A. 2003; 100(10):5676-81. PMC: 156260. DOI: 10.1073/pnas.0631525100. View

3.
Rinehart J, Horn E, Wei D, Soll D, Schneider A . Non-canonical eukaryotic glutaminyl- and glutamyl-tRNA synthetases form mitochondrial aminoacyl-tRNA in Trypanosoma brucei. J Biol Chem. 2003; 279(2):1161-6. DOI: 10.1074/jbc.M310100200. View

4.
Ahel I, Stathopoulos C, Ambrogelly A, Sauerwald A, Toogood H, Hartsch T . Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases. J Biol Chem. 2002; 277(38):34743-8. DOI: 10.1074/jbc.M206928200. View

5.
Curnow A, Hong K, Yuan R, Kim S, Martins O, Winkler W . Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci U S A. 1997; 94(22):11819-26. PMC: 23611. DOI: 10.1073/pnas.94.22.11819. View