» Articles » PMID: 15677467

Glucosepane is a Major Protein Cross-link of the Senescent Human Extracellular Matrix. Relationship with Diabetes

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2005 Jan 29
PMID 15677467
Citations 71
Authors
Affiliations
Soon will be listed here.
Abstract

The extracellular matrix in most tissues is characterized by progressive age-related stiffening and loss of proteolytic digestibility that are accelerated in diabetes and can be duplicated by the nonenzymatic reaction of reducing sugars and extracellular matrix proteins. However, most cross-links of the Maillard reaction described so far are present in quantities too low to account for these changes. Here we have determined in human skin and glomerular basement membrane (GBM) collagen the levels of the recently discovered lysine-arginine cross-links derived from glucose, methylglyoxal, glyoxal, and 3-deoxyglucosone, i.e. glucosepane, MODIC, GODIC, and DOGDIC, respectively. Insoluble preparations of skin collagen (n = 110) and glomerular basement membrane (GBM, n = 28) were enzymatically digested, and levels were measured by isotope dilution technique using liquid chromatography/mass spectrometry. In skin, all cross-links increased with age (p < 0.0001) except DOGDIC (p = 0.34). In nondiabetic controls, levels at 90 years were 2000, 30, and 15 pmol/mg for glucosepane, MODIC, and GODIC, respectively. Diabetes, but not renal failure, increased glucosepane to 5000 pmol/mg (p < 0.0001), and for all others, increased it to <60 pmol/mg (p < 0.01). In GBMs, glucosepane reached up to 500 pmol/mg of collagen and was increased in diabetes (p < 0.0001) but not old age. In conclusion, glucosepane is the single major cross-link of the senescent extracellular matrix discovered so far, accounting for up to >120 mole% of triple helical collagen modification in diabetes. Its presence in high quantities may contribute to a number of structural and cell matrix dysfunctions observed in aging and diabetes.

Citing Articles

AGE-RAGE Axis and Cardiovascular Diseases: Pathophysiologic Mechanisms and Prospects for Clinical Applications.

Wang B, Jiang T, Qi Y, Luo S, Xia Y, Lang B Cardiovasc Drugs Ther. 2024; .

PMID: 39499399 DOI: 10.1007/s10557-024-07639-0.


In vivo glycation-interplay between oxidant and carbonyl stress in bone.

Sroga G, Vashishth D JBMR Plus. 2024; 8(11):ziae110.

PMID: 39386996 PMC: 11458925. DOI: 10.1093/jbmrpl/ziae110.


Slot Blot- and Electrospray Ionization-Mass Spectrometry/Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry-Based Novel Analysis Methods for the Identification and Quantification of Advanced Glycation End-Products in the Urine.

Takata T, Inoue S, Kunii K, Masauji T, Miyazawa K Int J Mol Sci. 2024; 25(17).

PMID: 39273579 PMC: 11395049. DOI: 10.3390/ijms25179632.


Glycative stress as a cause of macular degeneration.

Bejarano E, Domenech-Bendana A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A Prog Retin Eye Res. 2024; 101:101260.

PMID: 38521386 PMC: 11699537. DOI: 10.1016/j.preteyeres.2024.101260.


Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior.

Kamml J, Acevedo C, Kammer D J Mech Behav Biomed Mater. 2023; 148:106198.

PMID: 37890341 PMC: 11519298. DOI: 10.1016/j.jmbbm.2023.106198.