» Articles » PMID: 15297455

A TRPC1/TRPC3-mediated Increase in Store-operated Calcium Entry is Required for Differentiation of H19-7 Hippocampal Neuronal Cells

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2004 Aug 7
PMID 15297455
Citations 71
Authors
Affiliations
Soon will be listed here.
Abstract

Store-operated calcium entry (SOCE) and TRPC protein expression were investigated in the rat-derived hippocampal H19-7 cell line. Thapsigargin-stimulated Ba2+ entry and the expression of TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 mRNA and protein were observed in proliferating H19-7 cells. When cells were placed under differentiating conditions, a change in TRPC homolog expression profile occurred. The expression of TRPC1 and TRPC3 mRNA and protein dramatically increased, while the expression of TRPC4 and TRPC7 mRNA and protein dramatically decreased; in parallel a 3.4-fold increase in the level of thapsigargin-stimulated Ba2+ entry was observed and found to be inhibited by 2-aminoethoxydiphenylborane. The selective suppression of TRPC protein levels by small interfering RNA (siRNA) approaches indicated that TRPC1 and TRPC3 are involved in mediating SOCE in proliferating H19-7 cells. Although TRPC4 and TRPC7 are expressed at much higher levels than TRPC1 and TRPC3 in proliferating cells, they do not appear to mediate SOCE. The co-expression of siRNA specific for TRPC1 and TRPC3 in proliferating cells inhibited approximately the same amount of SOCE as observed with expression of either siRNA alone, suggesting that TRPC1 and TRPC3 work in tandem to mediate SOCE. Under differentiating conditions, co-expression of siRNA for TRPC1 and TRPC3 blocked the normal 3.4-fold increase in SOCE and in turn blocked the differentiation of H19-7 cells. This study suggests that placing H19-7 cells under differentiating conditions significantly alters TRPC gene expression and increases the level of SOCE and that this increase in SOCE is necessary for cell differentiation.

Citing Articles

STIM Proteins: The Gas and Brake of Calcium Entry in Neurons.

Skobeleva K, Wang G, Kaznacheyeva E Neurosci Bull. 2024; 41(2):305-325.

PMID: 39266936 PMC: 11794855. DOI: 10.1007/s12264-024-01272-5.


The odyssey of the TR(i)P journey to the cellular membrane.

Rivera B, Orellana-Serradell O, Servili E, Santos R, Brauchi S, Cerda O Front Cell Dev Biol. 2024; 12:1414935.

PMID: 39108834 PMC: 11300232. DOI: 10.3389/fcell.2024.1414935.


Calcium and Neural Stem Cell Proliferation.

Diaz-Pina D, Rivera-Ramirez N, Garcia-Lopez G, Diaz N, Molina-Hernandez A Int J Mol Sci. 2024; 25(7).

PMID: 38612887 PMC: 11012558. DOI: 10.3390/ijms25074073.


The Combination of 5-FU and Resveratrol Can Suppress the Growth of Glioblastoma Cells Through Downregulation of TRPM2 and β-Catenin.

Aghababaei F, Nejati M, Karami H, Darvish M, Mirzaei H J Mol Neurosci. 2024; 74(1):7.

PMID: 38193979 DOI: 10.1007/s12031-023-02174-3.


Neuronal Store-Operated Calcium Channels.

Bouron A Mol Neurobiol. 2023; 60(8):4517-4546.

PMID: 37118324 DOI: 10.1007/s12035-023-03352-5.