» Articles » PMID: 15169845

AMPA-receptor Activation Regulates the Diffusion of a Membrane Marker in Parallel with Dendritic Spine Motility in the Mouse Hippocampus

Overview
Journal J Physiol
Specialty Physiology
Date 2004 Jun 1
PMID 15169845
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Dendritic spines are the site of most excitatory connections in the hippocampus. We have investigated the diffusibility of a membrane-bound green fluorescent protein (mGFP) within the inner leaflet of the plasma membrane using Fluorescence Recovery After Photobleaching. In dendritic spines the diffusion of mGFP was significantly retarded relative to the dendritic shaft. In parallel, we have assessed the motility of dendritic spines, and found an inverse correlation between spine motility and the rate of diffusion of mGFP. We then tested the influence of glutamate receptor activation or blockade, and the involvement of the actin cytoskeleton (using latrunculin A) on spine motility and mGFP diffusion. These results show that glutamate receptors regulate the mobility of molecules in the inner leaflet of the plasma membrane through an action upon the actin cytoskeleton, suggesting a novel mechanism for the regulation of postsynaptic receptor density and composition.

Citing Articles

Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function.

Rasia-Filho A, Calcagnotto M, von Bohlen Und Halbach O Adv Neurobiol. 2023; 34:255-310.

PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6.


The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

Scofield M, Heinsbroek J, Gipson C, Kupchik Y, Spencer S, Smith A Pharmacol Rev. 2016; 68(3):816-71.

PMID: 27363441 PMC: 4931870. DOI: 10.1124/pr.116.012484.


Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins.

Yamashita T, Hakizimana P, Wu S, Hassan A, Jacob S, Temirov J PLoS Genet. 2015; 11(9):e1005500.

PMID: 26352669 PMC: 4564264. DOI: 10.1371/journal.pgen.1005500.


Barriers in the brain: resolving dendritic spine morphology and compartmentalization.

Adrian M, Kusters R, Wierenga C, Storm C, Hoogenraad C, Kapitein L Front Neuroanat. 2014; 8:142.

PMID: 25538570 PMC: 4255500. DOI: 10.3389/fnana.2014.00142.


Cytoskeletal mechanisms for synaptic potentiation.

Schwechter B, Tolias K Commun Integr Biol. 2014; 6(6):e27343.

PMID: 24505509 PMC: 3914911. DOI: 10.4161/cib.27343.


References
1.
Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R . Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci U S A. 1999; 96(23):13438-43. PMC: 23966. DOI: 10.1073/pnas.96.23.13438. View

2.
Dai J, Sheetz M . Membrane tether formation from blebbing cells. Biophys J. 1999; 77(6):3363-70. PMC: 1300608. DOI: 10.1016/S0006-3495(99)77168-7. View

3.
Hill K, Welti S, Yu J, Murray J, Yip S, Condeelis J . Specific requirement for the p85-p110alpha phosphatidylinositol 3-kinase during epidermal growth factor-stimulated actin nucleation in breast cancer cells. J Biol Chem. 2000; 275(6):3741-4. DOI: 10.1074/jbc.275.6.3741. View

4.
Halpain S . Actin and the agile spine: how and why do dendritic spines dance?. Trends Neurosci. 2000; 23(4):141-6. DOI: 10.1016/s0166-2236(00)01576-9. View

5.
Lendvai B, Stern E, Chen B, Svoboda K . Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature. 2000; 404(6780):876-81. DOI: 10.1038/35009107. View